【題目】設(shè), 滿足約束條件,則的最大值為_______.
【答案】4
【解析】,畫(huà)出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最大值為.
[點(diǎn)睛]本小題主要考查線性規(guī)劃的基本問(wèn)題,考查了指數(shù)的運(yùn)算. 畫(huà)二元一次不等式或表示的平面區(qū)域的基本步驟:①畫(huà)出直線(有等號(hào)畫(huà)實(shí)線,無(wú)等號(hào)畫(huà)虛線);②當(dāng)時(shí),取原點(diǎn)作為特殊點(diǎn),判斷原點(diǎn)所在的平面區(qū)域;當(dāng)時(shí),另取一特殊點(diǎn)判斷;③確定要畫(huà)不等式所表示的平面區(qū)域.
【題型】填空題
【結(jié)束】
14
【題目】已知數(shù)列的前項(xiàng)和公式為,若,則數(shù)列的前項(xiàng)和__________.
【答案】
【解析】依題意得,故,所以是首項(xiàng)為,公比為的等比數(shù)列,故.
[點(diǎn)睛] 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式,其求解過(guò)程分為三步:
(1)先利用求出;(2)用替換中的得到一個(gè)新的關(guān)系,利用 便可求出當(dāng)時(shí)的表達(dá)式;(3)對(duì)時(shí)的結(jié)果進(jìn)行檢驗(yàn),看是否符合時(shí)的表達(dá)式,如果符合,則可以把數(shù)列的通項(xiàng)公式合寫(xiě);如果不符合,則應(yīng)該分與兩段來(lái)寫(xiě).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為1的正方體中,點(diǎn)是對(duì)角線上的動(dòng)點(diǎn)(點(diǎn)與不重合),則下列結(jié)論正確的是____.
①存在點(diǎn),使得平面平面;
②存在點(diǎn),使得平面;
③的面積不可能等于;
④若分別是在平面與平面的正投影的面積,則存在點(diǎn),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐 中, 平面 ,底面是等腰梯形,且 ,其中 .
(1)證明:平面 平面 .
(2)求點(diǎn) 到平面 的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲廠以千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每小時(shí)可獲得利潤(rùn)是元.
(1)要使生產(chǎn)該產(chǎn)品小時(shí)獲得的利潤(rùn)不低于元,求的取值范圍;
(2)要使生產(chǎn)千克該產(chǎn)品獲得的利潤(rùn)最大,問(wèn):甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某運(yùn)動(dòng)員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,產(chǎn)生了如下20組隨機(jī)數(shù):
據(jù)此估計(jì),該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長(zhǎng)度均為,多個(gè)區(qū)間并集的長(zhǎng)度為各區(qū)間長(zhǎng)度之和,例如,(1,2) [3,5)的長(zhǎng)度d=(2-1)+(5-3)=3. 用[x]表示不超過(guò)x的最大整數(shù),記{x}=x-[x],其中.設(shè), ,當(dāng)時(shí),不等式解集區(qū)間的長(zhǎng)度為,則的值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)橢圓: 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過(guò)定點(diǎn).
【答案】(Ⅰ).(Ⅱ)直線過(guò)定點(diǎn).
【解析】【試題分析】(I)根據(jù)圓的半徑和已知 ,故,由此求得橢圓方程.(II)設(shè)出直線的方程,聯(lián)立直線方程與橢圓方程,寫(xiě)出韋達(dá)定理,寫(xiě)出的斜率并相加,由此求得直線過(guò)定點(diǎn).
【試題解析】
(Ⅰ)圓與軸交點(diǎn)即為橢圓的焦點(diǎn),圓與軸交點(diǎn)即為橢圓的上下兩頂點(diǎn),所以, .從而,
因此橢圓的方程為: .
(Ⅱ)設(shè)直線的方程為.
由,消去得.
設(shè), ,則, .
直線的斜率 ;
直線的斜率 .
.
由的平分線在軸上,得.又因?yàn)?/span>,所以,
所以.
因此,直線過(guò)定點(diǎn).
[點(diǎn)睛]本小題主要考查橢圓方程的求解,考查圓與橢圓的位置關(guān)系,考查直線與圓錐曲線位置關(guān)系. 涉及直線與橢圓的基本題型有:(1)位置關(guān)系的判斷.(2)弦長(zhǎng)、弦中點(diǎn)問(wèn)題.(3)軌跡問(wèn)題.(4)定值、最值及參數(shù)范圍問(wèn)題.(5)存在性問(wèn)題.常用思想方法和技巧有:(1)設(shè)而不求.(2)坐標(biāo)法.(3)根與系數(shù)關(guān)系.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .
(Ⅰ)證明: ;
(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ) .
【解析】【試題分析】(I) 取的中點(diǎn)為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.
【試題解析】
證明:(Ⅰ)取的中點(diǎn)為,連接,,
∵為等邊三角形,∴.
底面中,可得四邊形為矩形,∴,
∵,∴平面,
∵平面,∴.
又,所以.
(Ⅱ)由面面,,
∴平面,所以為棱錐的高,
由,知,
,
∴.
由(Ⅰ)知,,∴.
.
由,可知平面,∴,
因此.
在中,,
取的中點(diǎn),連結(jié),則,,
∴ .
所以棱錐的側(cè)面積為.
【題型】解答題
【結(jié)束】
20
【題目】已知圓經(jīng)過(guò)橢圓: 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某服裝商場(chǎng),當(dāng)某一季節(jié)即將來(lái)臨時(shí),季節(jié)性服裝的價(jià)格呈現(xiàn)上升趨勢(shì).設(shè)一種服裝原定價(jià)為每件70元,并且每周(7天)每件漲價(jià)6元,5周后開(kāi)始保持每件100元的價(jià)格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過(guò)去時(shí),平均每周每件降價(jià)6元,直到16周末,該服裝不再銷售.
(1)試建立每件的銷售價(jià)格(單位:元)與周次之間的函數(shù)解析式;
(2)若此服裝每件每周進(jìn)價(jià)(單位:元)與周次之間的關(guān)系為,,試問(wèn)該服裝第幾周的每件銷售利潤(rùn)最大?(每件銷售利潤(rùn)=每件銷售價(jià)格-每件進(jìn)價(jià))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com