函數(shù)f(x)=數(shù)學(xué)公式x3+ax2+5x+6在區(qū)間[1,3]上為單調(diào)函數(shù),則實數(shù)a的取值范圍是


  1. A.
    [-數(shù)學(xué)公式,數(shù)學(xué)公式]
  2. B.
    (-∞,-3)
  3. C.
    (-∞,-3][-數(shù)學(xué)公式,+∞)
  4. D.
    [-3,數(shù)學(xué)公式]
C
分析:求導(dǎo)函數(shù),f(x)在[1,3]上為單調(diào)函數(shù),則f′(x)≤0或f′(x)≥0在[1,3]上恒成立,利用分離參數(shù)法,借助于導(dǎo)數(shù),確定函數(shù)的最值,即可求實數(shù)a的取值范圍.
解答:求導(dǎo)數(shù)可得:f′(x)=x2+2ax+5
∵f(x)在[1,3]上為單調(diào)函數(shù),∴f′(x)≤0或f′(x)≥0在[1,3]上恒成立.
令f′(x)=0,即x2+2ax+5=0,則a=
設(shè)g(x)=,則g′(x)=
令g′(x)=0得:x=或x=-(舍去)
∴當(dāng)1≤x≤時,g′(x)≥0,當(dāng)≤x≤3時,g′(x)≤0
∴g(x)在(1,)上遞增,在(,3)上遞減,
∵g(1)=-3 g(3)=-,g()=-
∴g(x)的最大值為g()=-,最小值為g(1)=-3
∴當(dāng)f′(x)≤0時,a≤g(x)≤g(1)=-3
當(dāng)f′(x)≥0時,a≥g(x)≥g()=-
∴a≤-3或a≥-
故選C.
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,分離參數(shù),求函數(shù)的最值是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點.
(1)求b的值;
(2)若1是其中一個零點,求f(2)的取值范圍;
(3)若a=1,g(x)=f′(x)+3x2+lnx,試問過點(2,5)可作多少條直線與曲線y=g(x)相切?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)一模)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線l不過第四象限且斜率為3,又坐標(biāo)原點到切線l的距離為
10
10
,若x=
2
3
時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)已知函數(shù)f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0時,試求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(2)若a=0,且曲線y=f(x)在點A、B(A、B不重合)處切線的交點位于直線x=2上,證明:A、B 兩點的橫坐標(biāo)之和小于4;
(3)如果對于一切x1、x2、x3∈[0,1],總存在以f(x1)、f(x2)、f(x3)為三邊長的三角形,試求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3ax+b(a≠0),已知曲線y=f(x)在點(2,f(x))處在直線y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=x3+ax2-x+1的極值情況,4位同學(xué)有下列說法:甲:該函數(shù)必有2個極值;乙:該函數(shù)的極大值必大于1;丙:該函數(shù)的極小值必小于1;。悍匠蘤(x)=0一定有三個不等的實數(shù)根. 這四種說法中,正確的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案