【題目】如圖是一個(gè)空間幾何體的正視圖和俯視圖,則它的側(cè)視圖為( )

A. B. C. D.

【答案】B

【解析】由正視圖和俯視圖可知,該幾何體是一個(gè)圓柱挖去一個(gè)圓錐構(gòu)成的,結(jié)合正視圖的寬及俯視圖的直徑可知其側(cè)視圖為B,故選B

點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4;坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.

(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場調(diào)查和預(yù)測,投資債券等穩(wěn)鍵型產(chǎn)品A的收益與投資成正比,其關(guān)系如圖1所示;投資股票等風(fēng)險(xiǎn)型產(chǎn)品B的收益與投資的算術(shù)平方根成正比,其關(guān)系如圖2所示(收益與投資單位:萬元).
(1)分別將A、B兩種產(chǎn)品的收益表示為投資的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有10萬元資金,并全部投資債券等穩(wěn)鍵型產(chǎn)品A及股票等風(fēng)險(xiǎn)型產(chǎn)品B兩種產(chǎn)品,問:怎樣分配這10萬元投資,才能使投資獲得最大收益,其最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐的底面是梯形,且, 平面, 中點(diǎn),

)求證: 平面;

)若,求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=ax2﹣(2a+1)x+a+1對于a∈[﹣1,1]時(shí)恒有f(x)<0,則實(shí)數(shù)x的取值范圍是(
A.(1,2)
B.(﹣∞,1)∪(2,+∞)
C.(0,1)
D.(﹣∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,an+1= Sn(n=1,2,3,…).
(1)證明:數(shù)列{ }是等比數(shù)列;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-xa∈R.

(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組為了研究某品牌智能手機(jī)在正常使用情況下的電池供電時(shí)間,分別從該品牌手機(jī)的甲、乙兩種型號中各選取部進(jìn)行測試,其結(jié)果如下:

甲種手機(jī)供電時(shí)間(小時(shí))

乙種手機(jī)供電時(shí)間(小時(shí))

(1)求甲、乙兩種手機(jī)供電時(shí)間的平均值與方差,并判斷哪種手機(jī)電池質(zhì)量好;

(2)為了進(jìn)一步研究乙種手機(jī)的電池性能,從上述部乙種手機(jī)中隨機(jī)抽取部,記所抽部手機(jī)供電時(shí)間不小于小時(shí)的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案