【題目】已知x、y滿足約束條件 ,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為7,則 的最小值為 .
【答案】7
【解析】解:作出不等式組 表示的平面區(qū)域,
得到如圖的△ABC及其內(nèi)部,其中A(1,0),B(3,4),C(0,1)
設(shè)z=F(x,y)=ax+by(a>0,b>0),
將直線l:z=ax+by進(jìn)行平移,并觀察直線l在x軸上的截距變化,
可得當(dāng)l經(jīng)過點(diǎn)B時(shí),目標(biāo)函數(shù)z達(dá)到最大值.
∴zmax=F(3,4)=7,即3a+4b=7.
因此, = (3a+4b)( )= [25+12( )],
∵a>0,b>0,可得 ≥2 =2,
∴ ≥ (25+12×2)=7,當(dāng)且僅當(dāng)a=b=1時(shí), 的最小值為7.
所以答案是:7
【考點(diǎn)精析】本題主要考查了基本不等式在最值問題中的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),圓的參數(shù)方程為(為參數(shù)),圓的參數(shù)方程為(為參數(shù)).若直線分別與圓和圓交于不同于原點(diǎn)的點(diǎn)和.
(1)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,求圓和圓的極坐標(biāo)方程;
(2)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生寒假閱讀名著的情況,一名教師對(duì)某班級(jí)的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:
本數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
男生 | 0 | 1 | 4 | 3 | 2 | 2 |
女生 | 0 | 0 | 1 | 3 | 3 | 1 |
(I)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為 X,求隨機(jī)變量 X的分布列和數(shù)學(xué)期望;
(III)試判斷男學(xué)生閱讀名著本數(shù)的方差 與女學(xué)生閱讀名著本數(shù)的方差 的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中點(diǎn),A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點(diǎn)B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為曲線:上兩點(diǎn),與的橫坐標(biāo)之和為.
(1)求直線的斜率;
(2)為曲線上一點(diǎn),在處的切線與直線平行,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,AB、BC、BD兩兩垂直,AB=BC=BD=4,E、F分別為棱BC、AD的中點(diǎn).
(1)求異面直線AB與EF所成角的余弦值;
(2)求E到平面ACD的距離;
(3)求EF與平面ACD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,以平面直角坐標(biāo)系的長(zhǎng)度單位為長(zhǎng)度單位建立極坐標(biāo)系.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數(shù),且過點(diǎn),求:(1)求橢圓方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M,N,點(diǎn),有|MP|=|NP|,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩支球隊(duì)進(jìn)行總決賽,比賽采用五場(chǎng)三勝制,即若有一隊(duì)先勝三場(chǎng),則此隊(duì)為總冠軍,比賽就此結(jié)束.因兩隊(duì)實(shí)力相當(dāng),每場(chǎng)比賽兩隊(duì)獲勝的可能性均為二分之一.據(jù)以往資料統(tǒng)計(jì),第一場(chǎng)比賽可獲得門票收入40萬元,以后每場(chǎng)比賽門票收入比上一場(chǎng)增加10萬元.
(1)求總決賽中獲得門票總收入恰好為150萬元且甲獲得總冠軍的概率;
(2)設(shè)總決賽中獲得的門票總收入為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com