(本小題滿分15分)
在等差數(shù)列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=an·bn,求數(shù)列{cn}的前n項(xiàng)和Sn
(1)bn=3n-1;(2)(2)Sn=(n-1)·3n+1
本試題主要是考查了數(shù)列的概念,和數(shù)列的求和,尤其是等差數(shù)列和等比數(shù)列的性質(zhì)的運(yùn)用,以及利用錯位相減法求解數(shù)列的和的思想的綜合運(yùn)用。
(1)根據(jù)已知的項(xiàng)之間的關(guān)系式,運(yùn)用基本元素表示得到數(shù)列的通項(xiàng)公式的求解
(2)結(jié)合第一問中的結(jié)論,得到cn=an·bn=(2n-1)·3n-1,的通項(xiàng)公式,分析通項(xiàng)公式的特點(diǎn),選擇錯位相減法求解數(shù)列的和。
解: (1)由a1,a2,a5是等比數(shù)列{bn}的前三項(xiàng)得,
a22= a1·a5⇒(a1+d)2=a1· (a1+4d)                            ········ 2分
⇒a12+2a1d+ d2 = a12+4a1d⇒d2 =2a1d,又d≠0,所以d=2a1=2,
從而an= a1+(n-1) d=2n-1,                            ·········· 5分
則b1= a1=1,b2= a2=3,
則等比數(shù)列{bn}的公比q=3,從而bn=3n-1.               ··········· 7分
(2)由(1)得,cn=an·bn=(2n-1)·3n-1,                       ········ 8分
則Sn= 1·1+3·3+5·32+7·33+…+(2n-1)·3n-1               ①
3Sn=    1·3+3·32+5·33+…+(2n-3)·3n-1+(2n-1)·3n       ②  ······· 10分
①-②得, -2Sn= 1·1+2·3+2·32+2·33+…+2·3n-1-(2n-1)·3n 
=1+2×-(2n-1)·3n=-2 (n-1)·3n-2             ······· 13分
則Sn=(n-1)·3n+1.                                    15分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列,滿足:,當(dāng)時,;對于任意的正整數(shù),
.設(shè)數(shù)列的前項(xiàng)和為.
(Ⅰ)計(jì)算、,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)求滿足的正整數(shù)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列的通項(xiàng)公式為 , 則它的公差為 (   )
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列{an}中,首項(xiàng)a1=4,a3=3,則該數(shù)列中第一次出現(xiàn)負(fù)值的項(xiàng)為( ).
A.第9項(xiàng) B.第10項(xiàng)C.第11項(xiàng) D.第12項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前n項(xiàng)和為Sn.已知a7=-2,S5=30.
(1) 求a1及d;
(2) 若數(shù)列{bn}滿足an (n∈N*),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)平面上有一點(diǎn)列 對一切正整數(shù)n,點(diǎn)在函數(shù)的圖象上,且的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列.
(Ⅰ)求點(diǎn)的坐標(biāo);
(Ⅱ)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)已知數(shù)列的前項(xiàng)和,
(1)求;  
(2)記,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列為等差數(shù)列,且,則        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

巳知函數(shù)有兩個不同的零點(diǎn),且方程有兩個不同的實(shí)根.若把這四個數(shù)按從小到大排列構(gòu)成等差數(shù)列,則實(shí)數(shù)的值為 (  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案