如圖,已知橢圓C:的左、右焦點(diǎn)為,其上頂點(diǎn)為.已知是邊長(zhǎng)為的正三角形.

(1)求橢圓C的方程;  

(2) 過點(diǎn)任作一直線交橢圓C于

點(diǎn),記若在線段上取一點(diǎn)使得,試判斷當(dāng)直線運(yùn)動(dòng)時(shí),點(diǎn)是否在某一定直線上運(yùn)動(dòng)?若在,請(qǐng)求出該定直線的方程,若不在,請(qǐng)說明理由.

 

 

 

【答案】

(1)是邊長(zhǎng)為的正三角形,則,……………………2分

故橢圓C的方程為.                       ……………………5分

(2)直線MN的斜率必存在,設(shè)其直線方程為,并設(shè).

聯(lián)立方程,消去,則

  ………………8分

,故.        ……10分

設(shè)點(diǎn)R的坐標(biāo)為,則由,解得

.         …………………11分

, 

,從而,故點(diǎn)R在定直線上.

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓C的方程為x2+
y2
2
=1
,點(diǎn)P(a,b)的坐標(biāo)滿足a2+
b2
2
≤1
,過點(diǎn)P的直線l與橢圓交于A、B兩點(diǎn),點(diǎn)Q為線段AB的中點(diǎn),求:
(1)點(diǎn)Q的軌跡方程;
(2)點(diǎn)Q的軌跡與坐標(biāo)軸的交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓C的方程為:
x2
a2
+
y2
b2
=1
(a>b>0),B是它的下頂點(diǎn),F(xiàn)是其右焦點(diǎn),BF的延長(zhǎng)線與橢圓及其右準(zhǔn)線分別交于P、Q兩點(diǎn),若點(diǎn)P恰好是BQ的中點(diǎn),則此橢圓的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C的中心在原點(diǎn),其一個(gè)焦點(diǎn)與拋物線y2=4
6
x
的焦點(diǎn)相同,又橢圓C上有一點(diǎn)M(2,1),直線l平行于OM且與橢圓C交于A、B兩點(diǎn),連MA、MB.
(1)求橢圓C的方程.
(2)當(dāng)MA、MB與x軸所構(gòu)成的三角形是以x軸上所在線段為底邊的等腰三角形時(shí),求直線l在y軸上截距的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市高三期末模擬考試?yán)砜茢?shù)學(xué)試卷(四) 題型:解答題

如圖,已知橢圓C:的左、右焦點(diǎn)為,其上頂點(diǎn)為.已知是邊長(zhǎng)為的正三角形.

(1)求橢圓C的方程;  

 (2) 過點(diǎn)任作一直線交橢圓C于兩點(diǎn),記若在線段上取一點(diǎn)使得,試判斷當(dāng)直線運(yùn)動(dòng)時(shí),點(diǎn)是否在某一定直線上運(yùn)動(dòng)?若在,請(qǐng)求出該定直線的方程,若不在,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案