【題目】為評估大氣污染防治效果,調(diào)查區(qū)域空氣質(zhì)量狀況,某調(diào)研機構(gòu)從兩地分別隨機抽取了天的觀測數(shù)據(jù),得到兩地區(qū)的空氣質(zhì)量指數(shù)(AQI),繪制如圖頻率分布直方圖:
根據(jù)空氣質(zhì)量指數(shù),將空氣質(zhì)量狀況分為以下三個等級:
空氣質(zhì)量指數(shù)(AQI) | |||
空氣質(zhì)量狀況 | 優(yōu)良 | 輕中度污染 | 中度污染 |
(1)試根據(jù)樣本數(shù)據(jù)估計地區(qū)當(dāng)年(天)的空氣質(zhì)量狀況“優(yōu)良”的天數(shù);
(2)若分別在兩地區(qū)上述天中,且空氣質(zhì)量指數(shù)均不小于的日子里隨機各抽取一天,求抽到的日子里空氣質(zhì)量等級均為“重度污染”的概率.
【答案】(1)274天(2)
【解析】
(1)從地區(qū)選出的20天中隨機選出一天,這一天空氣質(zhì)量狀況“優(yōu)良”的頻率為0.75,由估計地區(qū)當(dāng)年天)的空氣質(zhì)量狀況“優(yōu)良”的頻率為0.75,從而能求出地區(qū)當(dāng)年天)的空氣質(zhì)量狀況“優(yōu)良”的天數(shù).
(2)地20天中空氣質(zhì)量指數(shù)在,內(nèi)為3個,設(shè)為,,,空氣質(zhì)量指數(shù)在,內(nèi)為1個,設(shè)為,地20天中空氣質(zhì)量指數(shù)在,內(nèi)為2個,設(shè)為,,空氣質(zhì)量指數(shù)在,內(nèi)為3個,設(shè)為,,,設(shè)“,兩地區(qū)的空氣質(zhì)量等級均為“重度污染””為,利用列舉法能求出,兩地區(qū)的空氣質(zhì)量等級均為“重度污染”的概率.
解:(1)從地區(qū)選出的天中隨機選出一天,這一天空氣質(zhì)量狀況“優(yōu)良”的頻率為,
估計地區(qū)當(dāng)年(天)的空氣質(zhì)量狀況“優(yōu)良”的頻率為,地區(qū)當(dāng)年(天)的空氣質(zhì)量狀況“優(yōu)良”的天數(shù)約為天.
(2)地天中空氣質(zhì)量指數(shù)在內(nèi),為個,設(shè)為,空氣質(zhì)量指數(shù)在內(nèi),為個,設(shè)為,地天中空氣質(zhì)量指數(shù)在內(nèi),為個,設(shè)為,空氣質(zhì)量指數(shù)在內(nèi),為個,設(shè)為,設(shè)“兩地區(qū)的空氣質(zhì)量等級均為“重度污染””為,則基本事件空間
基本事件個數(shù)為,,包含基本事件個數(shù),
所以兩地區(qū)的空氣質(zhì)量等級均為“重度污染”的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓左右焦點分別為,,
若橢圓上的點到,的距離之和為,求橢圓的方程和焦點的坐標(biāo);
若、是關(guān)于對稱的兩點,是上任意一點,直線,的斜率都存在,記為,,求證:與之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有兩臺不同機器和生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評價標(biāo)準(zhǔn)規(guī)定:鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)完成下列列聯(lián)表,以產(chǎn)品等級是否達(dá)到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過0.05的情況下,認(rèn)為機器生產(chǎn)的產(chǎn)品比機器生產(chǎn)的產(chǎn)品好;
生產(chǎn)的產(chǎn)品 | 生產(chǎn)的產(chǎn)品 | 合計 | |
良好以上(含良好) | |||
合格 | |||
合計 |
(2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,從兩臺不同機器和生產(chǎn)的產(chǎn)品中各隨機抽取2件,求4件產(chǎn)品中機器生產(chǎn)的優(yōu)等品的數(shù)量多于機器生產(chǎn)的優(yōu)等品的數(shù)量的概率;
(3)已知優(yōu)秀等級產(chǎn)品的利潤為12元/件,良好等級產(chǎn)品的利潤為10元/件,合格等級產(chǎn)品的利潤為5元/件,機器每生產(chǎn)10萬件的成本為20萬元,機器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達(dá)到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器.你認(rèn)為該工廠會仍然保留原來的兩臺機器嗎?
附:獨立性檢驗計算公式:.
臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在單位正方體中,點P在線段上運動,給出以下四個命題:
異面直線與間的距離為定值;
三棱錐的體積為定值;
異面直線與直線所成的角為定值;
二面角的大小為定值.
其中真命題有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】青島二中學(xué)生民議會在周五下午高峰時段,對公交路甲站和線乙站各隨機抽取了位乘客,統(tǒng)計其乘車等待時間(指乘客從等車到乘上車的時間,乘車等待時間不超過分鐘).將統(tǒng)計數(shù)據(jù)按,,,…,分組,制成頻率分布直方圖:
假設(shè)乘客乘車等待時間相互獨立.
(1)此時段,從甲站的乘客中隨機抽取人,記為事件;從乙站的乘客中隨機抽取人,記為事件.若用頻率估計概率,求“兩人乘車等待時間都小于分鐘”的概率;
(2)此時段,從乙站的乘客中隨機抽取人(不重復(fù)抽取),抽得在的人數(shù)為,求隨機變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在梯形中,,過分別作,,垂足分別為.,,已知,將梯形沿同側(cè)折起,得空間幾何體,如圖2.
(1)若,證明:平面.
(2)若,,是線段上靠近點的三等分點,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列說法正確的是______(填上所有正確命題序號).(1)是的極大值點 ;(2)函數(shù)有且只有1個零點;(3)存在正實數(shù),使得恒成立 ;(4)對任意兩個正實數(shù),且,若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com