已知函數(shù)在時(shí)取得極小值.
(1)求實(shí)數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ae/c/tcyos1.png" style="vertical-align:middle;" />?若存在,求出,的值;
若不存在,說明理由.
(1),(2)滿足條件的值只有一組,且.
解析試題分析:(1)根據(jù)函數(shù)極值求參數(shù),不要忘記列表檢驗(yàn).因?yàn)閷?dǎo)數(shù)為零的點(diǎn)不一定是極值點(diǎn). 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2e/0/ky1co.png" style="vertical-align:middle;" />,所以由題意,解得或.當(dāng)時(shí),在上為減函數(shù),在上為增函數(shù),符合題意;當(dāng)時(shí),在上為增函數(shù),在,上為減函數(shù),不符合題意.(2)由值域范圍確定解析式中參數(shù)范圍,是函數(shù)中難點(diǎn).主要用到分類討論的思想方法.首先因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3d/7/b8juk.png" style="vertical-align:middle;" />,所以.① 若,則,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/01/4/sa8gz1.png" style="vertical-align:middle;" />,所以.設(shè),則,所以在上為增函數(shù).由于,即方程有唯一解為.② 若,則,即或.
(Ⅰ)時(shí),,由①可知不存在滿足條件的.(Ⅱ)時(shí),,兩式相除得.設(shè),則,在遞增,在遞減,由得,,此時(shí),矛盾.
【解】(1),
由題意知,解得或. 2分
當(dāng)時(shí),,
易知在上為減函數(shù),在上為增函數(shù),符合題意;
當(dāng)時(shí),,
易知在上為增函數(shù),在,上為減函數(shù),不符合題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,且在點(diǎn)
處的切線方程為.
(1)求的值;
(2)若函數(shù)在區(qū)間內(nèi)有且僅有一個(gè)極值點(diǎn),求的取值范圍;
(3)設(shè)為兩曲線,的交點(diǎn),且兩曲線在交點(diǎn)處的切線分別為.若取,試判斷當(dāng)直線與軸圍成等腰三角形時(shí)值的個(gè)數(shù)并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=2x3-3(a-1)x2+1,其中a≥1.求函數(shù)f(x)的單調(diào)區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點(diǎn)的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點(diǎn)的連線的斜率小于l,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某水產(chǎn)養(yǎng)殖場(chǎng)擬造一個(gè)無蓋的長(zhǎng)方體水產(chǎn)養(yǎng)殖網(wǎng)箱,為了避免混養(yǎng),箱中要安裝一些篩網(wǎng),其平面圖如下,如果網(wǎng)箱四周網(wǎng)衣(圖中實(shí)線部分)建造單價(jià)為每米56元,篩網(wǎng)(圖中虛線部分)的建造單價(jià)為每米48元,網(wǎng)箱底面面積為160平方米,建造單價(jià)為每平方米50元,網(wǎng)衣及篩網(wǎng)的厚度忽略不計(jì).
(1)把建造網(wǎng)箱的總造價(jià)y(元)表示為網(wǎng)箱的長(zhǎng)x(米)的函數(shù),并求出最低造價(jià);
(2)若要求網(wǎng)箱的長(zhǎng)不超過15米,寬不超過12米,則當(dāng)網(wǎng)箱的長(zhǎng)和寬各為多少米時(shí),可使總造價(jià)最低?(結(jié)果精確到0.01米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
根據(jù)統(tǒng)計(jì)資料,某工藝品廠的日產(chǎn)量最多不超過20件,每日產(chǎn)品廢品率與日產(chǎn)量(件)之間近似地滿足關(guān)系式(日產(chǎn)品廢品率).已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤(rùn)日正品贏利額日廢品虧損額)
(1)將該車間日利潤(rùn)(千元)表示為日產(chǎn)量(件)的函數(shù);
(2)當(dāng)該車間的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?最大日利潤(rùn)是幾千元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=lnx-mx(mR).
(1)若曲線y=f(x)過點(diǎn)P(1,-1),求曲線y=f(x)在點(diǎn)P處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最大值;
(3)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2,求證:x1x2>e2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若方程內(nèi)有兩個(gè)不等的實(shí)根,求實(shí)數(shù)m的取值范圍;(e為自然對(duì)數(shù)的底數(shù))
(2)如果函數(shù)的圖象與x軸交于兩點(diǎn)、且.求證:(其中正常數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)若在區(qū)間上函數(shù)的圖象恒在直線下方,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com