【題目】已知橢圓E:,直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與E有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.
若,點(diǎn)K在橢圓E上,、分別為橢圓的兩個(gè)焦點(diǎn),求的范圍;
證明:直線OM的斜率與l的斜率的乘積為定值;
若l過點(diǎn),射線OM與橢圓E交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線l斜率;若不能,說明理由.
【答案】(1) (2)見證明;(3)見解析
【解析】
,橢圓E:,兩個(gè)焦點(diǎn),,設(shè),求出的表達(dá)式,然后求解范圍即可.設(shè)A,B的坐標(biāo)分別為,,利用點(diǎn)差法轉(zhuǎn)化求解即可.直線l過點(diǎn),直線l不過原點(diǎn)且與橢圓E有兩個(gè)交點(diǎn)的充要條件是且設(shè),設(shè)直線,代入橢圓方程,通過四邊形OAPB為平行四邊形,轉(zhuǎn)化求解即可.
,橢圓E:,兩個(gè)焦點(diǎn),
設(shè),,,
,
,
的范圍是
設(shè)A,B的坐標(biāo)分別為,,則兩式相減,
得,,
即,故;
設(shè),設(shè)直線,即,
由的結(jié)論可知,代入橢圓方程得,,
由與,聯(lián)立得
若四邊形OAPB為平行四邊形,那么M也是OP的中點(diǎn),所以,
即,整理得解得,.經(jīng)檢驗(yàn)滿足題意
所以當(dāng)時(shí),四邊形OAPB為平行四邊形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)拋擲兩枚骰子,記事件為“朝上的2個(gè)數(shù)之和為偶數(shù)”,事件為“朝上的2個(gè)數(shù)均為偶數(shù)”,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線將矩形紙分為兩個(gè)直角梯形和,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是
圖1 圖2
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.在翻折的過程中,平面恒成立
D.在翻折的過程中,平面恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點(diǎn)E、F分別是棱PC、PD的中點(diǎn),則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結(jié)論正確的是________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:,且對(duì)任意,(s,k,l,)都有,則稱數(shù)列為“T”數(shù)列.
(1)證明:正項(xiàng)無窮等差數(shù)列是“T”數(shù)列;
(2)記正項(xiàng)等比數(shù)列的前n項(xiàng)之和為,若數(shù)列是“T”數(shù)列,求數(shù)列公比的取值范圍;
(3)若數(shù)列是“T”數(shù)列,且數(shù)列的前n項(xiàng)之和滿足,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個(gè)邊長(zhǎng)為的正三角形分成個(gè)全等的正三角形,第一次挖去中間的一個(gè)小三角形,將剩下的個(gè)小正三角形,分別再從中間挖去一個(gè)小三角形,保留它們的邊,重復(fù)操作以上的做法,得到的集合為希爾賓斯基三角形.設(shè)是前次挖去的小三角形面積之和(如是第次挖去的中間小三角形面積,是前次挖去的個(gè)小三角形面積之和),則 _____________ , __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000次.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn)次.假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組個(gè)人的每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;
(2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓,右焦點(diǎn)為,是斜率為的弦,的中點(diǎn)為,的垂直平分線交橢圓于,兩點(diǎn),的中點(diǎn)為.當(dāng)時(shí),直線的斜率為(為坐標(biāo)原點(diǎn)).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)原點(diǎn)到直線的距離為,求的取值范圍;
(3)若直線,直線的斜率滿足,判斷并證明是否為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如下表:
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?
(2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com