如圖,,雙曲線M是以B、C為焦點且過A點.(Ⅰ)建立適當?shù)淖鴺讼,求雙曲線M的方程;(Ⅱ)設(shè)過點E(1,0)的直線l分別與雙曲線M的左、右支交于F、G兩點,直線l的斜率為k,求k的取值范圍.;

(Ⅲ)對于(II)中的直線l,是否存在k使|OF|=|OG|
若有求出k的值,若沒有說明理由.(O為原點)
(Ⅰ)   (Ⅱ) (Ⅲ)
:(I)以BC邊的中點為原點,BC邊所在直線為x軸,建立直角坐標系,…1分


,得
…3分設(shè)雙曲線方程為
  ……5分
(II)當軸時,l與雙曲線無交點.當l不垂直x軸時,可設(shè)l的方程:
,消去y,得……7分
與雙曲線的左、右兩支分別交于
…10分
(Ⅲ)若|OF|=|OG|,三角形OFG中,設(shè)M是FG的中點,則有:OM……12分
由(II)易得,中點M(
則應(yīng)有:使|OF|=|OG|.14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的焦點與雙曲線的右焦點重合,則的值為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線與橢圓有共同的焦點,點是雙曲線的漸近線與橢圓的一個交點,求雙曲線與橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

O為坐標原點, 兩點分別在射線 上移動,且,動點P滿足,
記點P的軌跡為C.
(I)求的值;
(II)求P點的軌跡C的方程,并說明它表示怎樣的曲線?
(III)設(shè)點G(-1,0),若直線與曲線C交于M、N兩點,且M、N兩點都在以G為圓心的圓上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

 設(shè)曲線C:的離心率為,右準線與兩漸近線交于P,Q兩點,其右焦點為F,且△PQF為等邊三角形。
(1)求雙曲線C的離心率
(2)若雙曲線C被直線截得弦長為,求雙曲線方程;
(3)設(shè)雙曲線C經(jīng)過,以F為左焦點,為左準線的橢圓的短軸端點為B,求BF 中點的軌跡N方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

垂直于x軸的直線交雙曲線=1右支于M,N兩點,A1,A2為雙曲線的左右兩個頂點,求直線A1M與A2N的交點P的軌跡方程,并指出軌跡的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線離心率為2,有一個焦點與拋物線的焦點重
合,則mn的值為                            (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓經(jīng)過點,,其焦點在軸上,則該橢圓的標準方程為       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)



F2

 
F1
 
如圖,A為橢圓

O

 
x
 
的一個動點,弦AB、AC分別過焦點

B

 
F1、F2。當AC垂直于x軸時,恰好

C

 
=3∶1.

(1)求該橢圓的離心率;
(2)設(shè),試判斷是否為定值?若是,則求出該定值;若不是,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案