若橢圓經(jīng)過點(diǎn),,其焦點(diǎn)在軸上,則該橢圓的標(biāo)準(zhǔn)方程為       
∵橢圓的焦點(diǎn)在軸上,∴可設(shè)方程為,又∵,∴,而橢圓過點(diǎn),把點(diǎn)的坐標(biāo)代入,得,∴,故橢圓的標(biāo)準(zhǔn)方程是。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線x2-3y2=3的右焦點(diǎn)為F,右準(zhǔn)線為l,以F為左焦點(diǎn),以l為左準(zhǔn)線的橢圓C的中心為A,又A點(diǎn)關(guān)于直線y=2x的對稱點(diǎn)A’恰好在雙曲線的左準(zhǔn)線上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,,雙曲線M是以B、C為焦點(diǎn)且過A點(diǎn).(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求雙曲線M的方程;(Ⅱ)設(shè)過點(diǎn)E(1,0)的直線l分別與雙曲線M的左、右支交于F、G兩點(diǎn),直線l的斜率為k,求k的取值范圍.;

(Ⅲ)對于(II)中的直線l,是否存在k使|OF|=|OG|
若有求出k的值,若沒有說明理由.(O為原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知?jiǎng)狱c(diǎn)的坐標(biāo)滿足,則動(dòng)點(diǎn)的軌跡是(      )
A.橢圓B.雙曲線C.拋物線D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與曲線的交點(diǎn)個(gè)數(shù)是   (     )
A 0個(gè)       B  1個(gè)       C  2個(gè)       D  3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)為橢圓的中心.橢圓的離心率是拋物線離心率的一半,且它們的準(zhǔn)線互相平行。又拋物線與橢圓交于點(diǎn),求拋物線與橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線上任意一點(diǎn)到焦點(diǎn)F的距離比到軸的距離大1,(1)求拋物線C的方程;(2)若過焦點(diǎn)F的直線交拋物線于M,N兩點(diǎn),M在第一象限,且,求直線MN的方程;(3)過點(diǎn)的直線交拋物線于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于軸的對稱點(diǎn)為R,求證:直線RQ必過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為,雙曲線的離心率為,則+的最小值為( )
A.B.2C.D.4

查看答案和解析>>

同步練習(xí)冊答案