【題目】如圖,在四棱錐中, 是正方形, 平面. , , , 分別是 , , 的中點.
(1)求證:平面平面.
(2)在線段上確定一點,使平面,并給出證明.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)先通過得到線面平行即面,同理可證面,根據(jù)面面平行判定定理可得結(jié)果;(2)為線段中點時, 平面,通過先證面,得到,根據(jù)等腰三角形的性質(zhì)得,運用線面垂直的判定定理即可得到結(jié)論.
試題解析:()∵中, , 分別是, 的中點,∴,又∵四邊形為正方形,得,∴,∵平面, 面,∴面.同理面,∵, 是面內(nèi)相交直線,∴平面平面. 為中點時, 面.
(2)為線段中點時, 平面,證明:取中點,連接, , ,∵,且,∴四邊形為梯形,由面, 面,得,∵, ,∴面,又面,∴.∵為等腰直角三角形, 為斜邊中點,∴,∵, 是面內(nèi)的相交直線,∴面.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點A(1,2),B(3,1)到直線l距離分別是 , ﹣ ,則滿足條件的直線l共有( )條.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明計劃在8月11日至8月20日期間游覽某主題公園,根據(jù)旅游局統(tǒng)計數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時容量之比, 以下為舒適, 為一般, 以上為擁擠),情況如圖所示,小明隨機選擇8月11日至8月19日中的某一天到達(dá)該主題公園,并游覽天.
(1)求小明連續(xù)兩天都遇上擁擠的概率;
(2)設(shè)是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學(xué)期望;
(3)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和Sn滿足:Sn=n2 , 等比數(shù)列{bn}滿足:b2=2,b5=16
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中石化集團獲得了某地深海油田塊的開采權(quán),集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料,進(jìn)入全面勘探時期后,集團按網(wǎng)絡(luò)點米布置井位進(jìn)行全面勘探,由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口斷井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見下表:
井號 | ||||||
坐標(biāo) | ||||||
鉆探深度 | ||||||
出油量 |
(1)~號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計的預(yù)報值;
(2)現(xiàn)準(zhǔn)備勘探新井,若通過號并計算出的的值(精確到)與(1)中的值差不超過,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
(參考公式和計算結(jié)果:)
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有口井中任意勘探口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)的動點P到定直線l:x=的距離與點P到定點F(,0)之比為.
(1)求動點P的軌跡C的方程;
(2)若點N為軌跡C上任意一點(不在x軸上),過原點O作直線AB,交(1)中軌跡C于點A、B,且直線AN、BN的斜率都存在,分別為k1、k2,問k1·k2是否為定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機是否與年齡有關(guān),現(xiàn)隨機抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機與年齡有關(guān)?
購買意愿強 | 購買意愿弱 | 合計 | |
20~40歲 | |||
大于40歲 | |||
合計 |
(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得 =80, =20, yi=184, =720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
附:線性回歸方程y=bx+a中,b= ,a= ﹣b ,其中 , 為樣本平均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com