已知焦點(diǎn)在x軸上的橢圓的離心率為
1
2
,它的長(zhǎng)軸長(zhǎng)等于圓C:x2+y2-2x-15=0的半徑,則橢圓的標(biāo)準(zhǔn)方程是( 。
A、
x2
4
+
y2
3
=1
B、
x2
16
+
y2
12
=1
C、
x2
4
+y2=1
D、
x2
16
+
y2
4
=1
分析:利用配方化簡(jiǎn)x2+y2-2x-15=0得到圓的半徑為4,所以橢圓的長(zhǎng)軸為4,根據(jù)離心率求出c,根據(jù)勾股定理求出b得到橢圓的解析式即可.
解答:解:∵x2+y2-2x-15=0,
∴(x-1)2+y2=16,
∴r=4=2a,
∴a=2,
∵e=
1
2
,∴c=1,∴b2=3.
故選A
點(diǎn)評(píng):考查學(xué)生會(huì)根據(jù)條件求圓標(biāo)準(zhǔn)方程,以及靈活運(yùn)用橢圓簡(jiǎn)單性質(zhì)解決數(shù)學(xué)問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l過(guò)焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長(zhǎng)|AB|等于△PF1F2的周長(zhǎng),求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化二模)如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過(guò)程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為
3
2
的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過(guò)程中,圖1中線段AM的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個(gè)命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
k
2
,0)
對(duì)稱;⑤函數(shù)f(m)=3
3
時(shí)AM過(guò)橢圓的右焦點(diǎn).其中所有的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044

解答題

已知橢圓=1的焦點(diǎn)為F1、F2,能否在x軸下方的橢圓弧上找到一點(diǎn)M,使M到下準(zhǔn)線的距離|MN|等于點(diǎn)M到焦點(diǎn)F1、F2的距離的比例中項(xiàng)?若存在,求出M點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年湖南省懷化市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過(guò)程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過(guò)程中,圖1中線段AM的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個(gè)命題①;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)對(duì)稱;⑤函數(shù)時(shí)AM過(guò)橢圓的右焦點(diǎn).其中所有的真命題是( )
A.①③⑤
B.②③④
C.②③⑤
D.③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l過(guò)焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長(zhǎng)|AB|等于△PF1F2的周長(zhǎng),求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案