【題目】定義在上的函數(shù),其導(dǎo)函數(shù)為,且,,若當時,,則
A. B.
C. D.
【答案】B
【解析】
根據(jù)題意,利用函數(shù)的奇偶性和導(dǎo)數(shù),求得在單調(diào)遞增,在單調(diào)遞減.
解法一:求得,,利用單調(diào)性,即可比較;
解法二:由條件可得在單調(diào)遞減,在單調(diào)遞增,且關(guān)于對稱,,,利用單調(diào)性,即可比較,得到答案.
由題意,函數(shù)滿足,即函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,
由導(dǎo)數(shù)的幾何意義可知,函數(shù)的圖像關(guān)于軸對稱,所以為偶函數(shù),
所以.
當時,,當時,,
所以在單調(diào)遞增,在單調(diào)遞減.
解法一:,.
因為,所以即,所以A錯;
因為,所以即,所以B對;
又無法確定符號,所以C, D錯.故選B.
解法二:由條件可得在單調(diào)遞減,在單調(diào)遞增,且關(guān)于對稱.
,,
因為,且
所以即,
即,
又無法確定符號,所以C, D錯.故選B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,質(zhì)量指標值越大表明質(zhì)量越好,現(xiàn)用一種新配方做試驗,生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標值,得到下面試驗結(jié)果:
質(zhì)量指標值 | |||||
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(1)將答題卡上列出的這些數(shù)據(jù)的頻率分布表填寫完整,并補齊頻率分布直方圖;
(2)估計這種產(chǎn)品質(zhì)量指標值的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)與中位數(shù)(結(jié)果精確到0.1).
質(zhì)量指標值分組 | 頻數(shù) | 頻率 |
6 | 0.06 | |
合計 | 100 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的圖象與直線分別交于、兩點,則( )
A.的最小值為
B.使得曲線在處的切線平行于曲線在處的切線
C.函數(shù)至少存在一個零點
D.使得曲線在點處的切線也是曲線的切線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,依托用戶碎片化時間的娛樂需求、分享需求以及視頻態(tài)的信息負載力,短視頻快速崛起;與此同時,移動閱讀方興未艾,從側(cè)面反應(yīng)了人們對精神富足的一種追求,在習(xí)慣了大眾娛樂所帶來的短暫愉悅后,部分用戶依舊對有著傳統(tǒng)文學(xué)底蘊的嚴肅閱讀青睞有加.
某讀書APP抽樣調(diào)查了非一線城市M和一線城市N各100名用戶的日使用時長(單位:分鐘),繪制成頻率分布直方圖如下,其中日使用時長不低于60分鐘的用戶記為“活躍用戶”.
(1)請?zhí)顚懸韵?/span>列聯(lián)表,并判斷是否有99.5%的把握認為用戶活躍與否與所在城市有關(guān)?
活躍用戶 | 不活躍用戶 | 合計 | |
城市M | |||
城市N | |||
合計 |
(2)以頻率估計概率,從城市M中任選2名用戶,從城市N中任選1名用戶,設(shè)這3名用戶中活躍用戶的人數(shù)為,求的分布列和數(shù)學(xué)期望.
(3)該讀書APP還統(tǒng)計了2018年4個季度的用戶使用時長y(單位:百萬小時),發(fā)現(xiàn)y與季度()線性相關(guān),得到回歸直線為,已知這4個季度的用戶平均使用時長為12.3百萬小時,試以此回歸方程估計2019年第一季度()該讀書APP用戶使用時長約為多少百萬小時.
附:,其中.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上動點與定點的距離和它到定直線的距離的比是常數(shù).若過的動直線與曲線相交于兩點.
(1)判斷曲線的名稱并寫出它的標準方程;
(2)是否存在與點不同的定點,使得恒成立?若存在,求出點的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標為,.
(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;
(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用一根長為分米的鐵絲制作一個長方體框架(由12條棱組成),使得長方體框架的底面長是寬的倍.在制作時鐵絲恰好全部用完且損耗忽略不計.現(xiàn)設(shè)該框架的底面寬是分米,用表示該長方體框架所占的空間體積(即長方體的體積).
(1)試求函數(shù)的解析式及其定義域;
(2)當該框架的底面寬取何值時,長方體框架所占的空間體積最大,并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com