【題目】已知函數(shù), .
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求在區(qū)間上的最大值和最小值;
(3)當(dāng)時(shí),若方程在區(qū)間上有唯一解,求的取值范圍.
【答案】(1);(2)最大值為,最小值為;(3)
【解析】試題分析:(1)由可得切線斜率,再由點(diǎn)斜式可得切線方程;
(2)由,可得,所以在區(qū)間上單調(diào)遞增,從而可得最值;
(3)當(dāng)時(shí), .設(shè), ,分析可知在區(qū)間上單調(diào)遞減,且, ,所以存在唯一的,使,即,結(jié)合函數(shù)單調(diào)性可得解.
試題解析:
(1)當(dāng)時(shí), ,
所以, .
又因?yàn)?/span>,
所以曲線在點(diǎn)處的切線方程為.
(2)當(dāng)時(shí), ,
所以.
當(dāng)時(shí), , ,
所以.
所以在區(qū)間上單調(diào)遞增.
因此在區(qū)間上的最大值為,最小值為.
(3)當(dāng)時(shí), .
設(shè), ,
因?yàn)?/span>, ,所以.
所以在區(qū)間上單調(diào)遞減.
因?yàn)?/span>, ,
所以存在唯一的,使,即.
所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
因?yàn)?/span>, ,又因?yàn)榉匠?/span>在區(qū)間上有唯一解,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖一塊長方形區(qū)域ABCD,AD=2(km),AB=1(km).在邊AD的中點(diǎn)O處,有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠EOF始終為,設(shè)∠AOE=,探照燈O照射在長方形ABCD內(nèi)部區(qū)域的面積為S.
(1)當(dāng)0≤時(shí),寫出S關(guān)于的函數(shù)表達(dá)式;
(2)若探照燈每9分鐘旋轉(zhuǎn)“一個(gè)來回”(OE自OA轉(zhuǎn)到OC,再回到OA,稱“一個(gè)來回”,忽略OE在OA及OC反向旋轉(zhuǎn)時(shí)所用時(shí)間),且轉(zhuǎn)動(dòng)的角速度大小一定,設(shè)AB邊上有一點(diǎn)G,且∠AOG,求點(diǎn)G在“一個(gè)來回”中,被照到的時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱臺(tái)中, 底面,平面平面為的中點(diǎn).
(1)證明: ;
(2)若,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足:對(duì)于任意實(shí)數(shù)都有恒成立,且當(dāng)時(shí),.
(Ⅰ)判定函數(shù)的單調(diào)性,并加以證明;
(Ⅱ)設(shè),若函數(shù)有三個(gè)零點(diǎn)從小到大分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)工會(huì)利用 “健步行”開展健步走積分獎(jiǎng)勵(lì)活動(dòng).會(huì)員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分).記年齡不超過40歲的會(huì)員為類會(huì)員,年齡大于40歲的會(huì)員為類會(huì)員.為了解會(huì)員的健步走情況,工會(huì)從兩類會(huì)員中各隨機(jī)抽取名會(huì)員,統(tǒng)計(jì)了某天他們健步走的步數(shù),并將樣本數(shù)據(jù)分為, , , , , , , , 九組,將抽取的類會(huì)員的樣本數(shù)據(jù)繪制成頻率分布直方圖, 類會(huì)員的樣本數(shù)據(jù)繪制成頻率分布表(圖、表如下所示).
(Ⅰ)求和的值;
(Ⅱ)從該地區(qū)類會(huì)員中隨機(jī)抽取名,設(shè)這名會(huì)員中健步走的步數(shù)在千步以上(含千步)的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(Ⅲ)設(shè)該地區(qū)類會(huì)員和類會(huì)員的平均積分分別為和,試比較和的大小(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險(xiǎn),在原地等待營救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現(xiàn)乙船朝北偏東的方向即沿直線CB前往B處救援,則等于 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,且圓與圓存在公共點(diǎn),則圓與直線的位置關(guān)系是( 。
A. 相切B. 相離C. 相交D. 相切或相交
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com