設(shè)c=tan
2012π
3
=tan
3
=-
3
R,向量
a
=(x,1),
b
=(1,y),
c
=(2,-4)且
a
c
,
b
c
,則|
a
+
b
|=
10
10
分析:根據(jù)向量平行、垂直的充要條件,算出x、y的值,從而得到向量
a
、
b
的坐標,再利用向量模的公式可得|
a
+
b
|值.
解答:解:∵
a
=(x,1),
c
=(2,-4),且
a
c

∴x×2+1×(-4)=0,解之得x=2
又∵
b
=(1,y),
c
=(2,-4),且
b
c
,
∴1×(-4)=2y,解之得y=-2
由此得:
a
=(2,1),
b
=(1,-2)
a
+
b
=(3,-1),得|
a
+
b
|=
32+(-1)2
=
10

故答案為
10
點評:本題給出向量平行、垂直,求
a
+
b
的模,著重考查了向量平行、垂直的充要條件、向量模的公式等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于下列命題:
①在△ABC中,若sin2A=sin2B,則△ABC為等腰三角形;
②已知a,b,c是△ABC的三邊長,若a=2,b=5,A=
π
6
,則△ABC有兩組解;
③設(shè)a=sin
2012π
3
,b=cos
2012π
3
,c=tan
2012π
3
,則a>b>c;
④將函數(shù)y=2sin(3x+
π
6
)
圖象向左平移
π
6
個單位,得到函數(shù)y=2cos(3x+
π
6
)
圖象.
其中正確命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于下列命題:
①在△ABC中,若sin2A=sin2B,則△ABC為等腰三角形;
②已知a,b,c是△ABC的三邊長,若a=2,b=5,A=
π
6
,則△ABC有兩組解;
③設(shè)a=sin
2012π
3
,b=cos
2012π
3
,c=tan
2012π
3
,則a>b>c;
④將函數(shù)y=2sin(3x+
π
6
)
圖象向左平移
π
6
個單位,得到函數(shù)y=2cos(3x+
π
6
)
圖象.
其中正確命題的序號是
③④
③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于下列命題:
①在△ABC中,若sin2A=sin2B,則△ABC為等腰三角形;
②已知a,b,c是△ABC的三邊長,若a=2,b=5,A=
π
6
,則△ABC有兩組解;
③設(shè)a=sin
2012π
3
b=cos
2012π
3
,c=tan
2012π
3
,則a>b>c;
④將函數(shù)y=2sin(3x+
π
6
)
圖象向左平移
π
6
個單位,得到函數(shù)y=2cos(3x+
π
6
)
圖象.
其中正確命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于下列命題:
①在△ABC中,若sin2A=sin2B,則△ABC為等腰三角形;
②已知a,b,c是△ABC的三邊長,若a=2,b=5,A=
π
6
,則△ABC有兩組解;
③設(shè)a=sin
2012π
3
,b=cos
2012π
3
,c=tan
2012π
3
,則a>b>c;
④將函數(shù)y=2sin(3x+
π
6
)
圖象向左平移
π
6
個單位,得到函數(shù)y=2cos(3x+
π
6
)
圖象.
其中正確命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案