若0<m<n<p,f(x)=|lgx|,且f(m)>f(p)>f(n),則有


  1. A.
    n>1
  2. B.
    mp<1
  3. C.
    mp>1
  4. D.
    (n-1)(m-1)(p-1)>0
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,若g(x)=f(x)+
2
x
+x-2-b(b∈R).
(1)求曲線y=f(x)在點P(1,f(1))處的切線方程;
(2)若函數(shù)g(x)在區(qū)間[e-1,e]上有兩個零點,求實數(shù)b的取值范圍;
(3)當(dāng)0<m<n時,求證:f(m+n)-f(2n)<
m-n
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列三個命題中,其中所有正確命題的序號是

①函數(shù)f(x)=x+
k
x
(k≠0)在(0,+∞)上的最小值是2
k

②命題“函數(shù)f(x)=xsinx+1,當(dāng)x1,x2∈[-
π
2
,
π
2
],且|x1|>|x2|時,有f(x1)>f(x2)”是真命題.
③函數(shù)f(x)=|x2-4|,若f(m)=f(n),且0<m<n,則動點p(m,n)到直線5x+12y+39=0的最小距離是3-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中是真命題的是
①②
①②
(寫出所有你認(rèn)為是真命題的序號)
①命題p:?x∈R,x2+1≥1;命題q:?x∈R,x2-x+1≤0,則p∧(¬q)是真命題;
②若不等式(m+n)(
a
m
+
1
n
)≥25(a>0)
對?m,n∈R+恒成立,則a的最小值為16;
③函數(shù)f(x)=sinx-x的零點有3個;
④若函數(shù)f(x)=sin(2x+φ)的圖象關(guān)于y軸對稱,則φ=
π
2
;
⑤“a,b,c成等比數(shù)列”是“b=
ac
”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知點P(
x0,y0)、M(m,n)是圓錐曲線C上不與頂點重合的任意兩點,MN是垂直于x軸的一條垂軸弦,直線MP,NP分別交x軸于點E(xE,0)和點F(xF,0).
(Ⅰ)試用x0,y0,m,n的代數(shù)式分別表示xE和xF;
(Ⅱ)已知“若點P(x0,y0)是圓C:x2+y2=R2上的任意一點(
x0•y0≠0),MN是垂直于x軸的垂軸弦,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0),則xExF=R2”.類比這一結(jié)論,我們猜想:“若曲線C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),則xE•xF也是與點M、N、P位置無關(guān)的定值”,請你對該猜想給出證明.

查看答案和解析>>

同步練習(xí)冊答案