【題目】已知函數(shù),,曲線y=g(x)在x=1處的切線方程為x-2y-1=0.
(Ⅰ)求,b;
(Ⅱ)若,求m的取值范圍.
【答案】(1),.(2).
【解析】
(1)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義求切線斜率,最后化簡解得,,(2)先化簡不等式,再構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)性質(zhì),結(jié)合,確定m的取值范圍.
(1)∵,∴.又依題意,可得:,
即.又因?yàn)榍悬c(diǎn)為,所以,即.
由上可解得,.
(2)依題意,,即.又,所以原不等式
等價(jià)于.構(gòu)造函數(shù),則,,
則.
①
又,故當(dāng)時,,故不合題意.
②當(dāng)時,令,得,由下表:
單調(diào)遞增 | 單調(diào)遞減 |
可知,.
構(gòu)造,,可得,由下表:
單調(diào)遞減 | 單調(diào)遞增 |
可知,.由上可知,只能有,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、分別是離心率為的橢圓:的左、右焦點(diǎn),點(diǎn)是橢圓上異于其左、右頂點(diǎn)的任意一點(diǎn),過右焦點(diǎn)作的外角平分線的垂線,交于點(diǎn),且(為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)若點(diǎn)在圓上,且在第一象限,過作圓的切線交橢圓于、兩點(diǎn),問:的周長是否為定值?如果是,求出該定值;如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,函數(shù)被稱為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個命題:
①;
②函數(shù)是偶函數(shù);
③任取一個不為零的有理數(shù)對任意的恒成立;
④存在三個點(diǎn),使得為等邊三角形.
其中真命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了反映國民經(jīng)濟(jì)各行業(yè)對倉儲物流業(yè)務(wù)的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.
根據(jù)該折線圖,下列結(jié)論正確的是
A. 2016年各月的倉儲指數(shù)最大值是在3月份
B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%
C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大
D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務(wù)活動仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)或,,若是的充分條件.
(1)求證:函數(shù)的圖像總在直線的下方;
(2)是否存在實(shí)數(shù),使得不等式對一切實(shí)數(shù)恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生態(tài)環(huán)境部環(huán)境規(guī)劃院研究表明,京津冀區(qū)域PM2.5主要來自工業(yè)和民用污染,其中冬季民用污染占比超過50%,最主要的源頭是散煤燃燒.因此,推進(jìn)煤改清潔能源成為三地協(xié)同治理大氣污染的重要舉措.2018年是北京市壓減燃煤收官年,450個平原村完成了煤改清潔能源,全市集中供熱清潔化比例達(dá)到99%以上,平原地區(qū)基本實(shí)現(xiàn)“無煤化”,為了解“煤改氣”后居民在采暖季里每月用氣量的情況,現(xiàn)從某村隨機(jī)抽取100戶居民進(jìn)行調(diào)查,發(fā)現(xiàn)每戶的用氣量都在150立方米到450立方米之間,得到如圖所示的頻率分布直方圖.在這些用戶中,用氣量在區(qū)間的戶數(shù)為( )
A.5B.15C.20D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)解答一道三角函數(shù)題:“已知函數(shù),且.
(Ⅰ)求的值;
(Ⅱ)求函數(shù)在區(qū)間上的最大值及相應(yīng)x的值.”
該同學(xué)解答過程如下:
解答:(Ⅰ)因?yàn)?/span>,所以.因?yàn)?/span>,
所以.
(Ⅱ)因?yàn)?/span>,所以.令,則.
畫出函數(shù)在上的圖象,
由圖象可知,當(dāng),即時,函數(shù)的最大值為.
下表列出了某些數(shù)學(xué)知識:
任意角的概念 | 任意角的正弦、余弦、正切的定義 |
弧度制的概念 | ,的正弦、余弦、正切的誘導(dǎo)公式 |
弧度與角度的互化 | 函數(shù),,的圖象 |
三角函數(shù)的周期性 | 正弦函數(shù)、余弦函數(shù)在區(qū)間上的性質(zhì) |
同角三角函數(shù)的基本關(guān)系式 | 正切函數(shù)在區(qū)間上的性質(zhì) |
兩角差的余弦公式 | 函數(shù)的實(shí)際意義 |
兩角差的正弦、正切公式 | 參數(shù)A,,對函數(shù)圖象變化的影響 |
兩角和的正弦、余弦、正切公式 | 二倍角的正弦、余弦、正切公式 |
請寫出該同學(xué)在解答過程中用到了此表中的哪些數(shù)學(xué)知識.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),且對任意實(shí)數(shù)x,有f(x﹣2)=x2﹣3x+3.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若{x|f(x﹣2)=﹣(a+2)x+3﹣b}={a},求a和b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).
(1)求證:平面平面;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com