【題目】如圖1,在四邊形中,,,,.把沿著翻折至的位置,構(gòu)成三棱錐如圖2.
(1)當(dāng)時(shí),證明:;
(2)當(dāng)三棱錐的體積最大時(shí),求點(diǎn)到平面的距離.
【答案】(1)證明見解析;(2).
【解析】
(1)由題易得,再證,可得平面,最后得出即可;
(2)設(shè)到面的距離,要使取到最大值,需且僅需取到最大值,再取的中點(diǎn),連結(jié),分析可得當(dāng)且僅當(dāng)平面平面時(shí),取得最大值,,設(shè)到平面的距離為,利用等體積法計(jì)算出即可.
(1)因?yàn)?/span>,,,,
依題意得,,即,,
因?yàn)?/span>,所以,故,即,
又因?yàn)?/span>,,所以平面,;
(2)因?yàn)?/span>,,,,所以的面積為,
設(shè)到面的距離,則三棱錐的體積為,
故要使取到最大值,需且僅需取到最大值,
取的中點(diǎn),連結(jié),如下圖,依題意知,,
所以,,且,
因?yàn)槠矫?/span>平面,,平面,
所以當(dāng)平面平面時(shí),平面,故,
故當(dāng)且僅當(dāng)平面平面時(shí),取得最大值,
此時(shí),
設(shè)到平面的距離為,可得,
故,解得,故到平面的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:的左、右焦點(diǎn)分別是,,離心率為,左、右頂點(diǎn)分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、(不與點(diǎn)、重合),直線與直線相交于點(diǎn),求證:、、三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷方程的根個(gè)數(shù);
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A. (0,)B. (,e)C. (,)D. (0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校甲、乙、丙三名語文老師和、、三名數(shù)學(xué)老師被派往某縣城一中和二中支教,其中有一名語文老師和一名數(shù)學(xué)老師被派到了一中,其它老師都去二中支教,則甲與被派到同一所學(xué)校的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中, 為自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí), ,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,古稱“角黍”,平行四邊形形狀的紙片是由六個(gè)邊長為的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______;若該六面體內(nèi)有一球,則該球表面積的最大值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com