已知函數(shù)

(1)當(dāng)a=1時(shí),證明函數(shù)只有一個(gè)零點(diǎn);

(2)若函數(shù)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

(1)當(dāng)x=1時(shí),函數(shù)取得最大值,其值為

當(dāng)時(shí),,即,函數(shù)只有一個(gè)零點(diǎn);

(2)   實(shí)數(shù)a的取值范圍是


解析:

(1)當(dāng)a=1時(shí),,其定義域是

       

    令,即,解得

    ,舍去.

     當(dāng)時(shí),;當(dāng)時(shí),

∴函數(shù)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減

    ∴當(dāng)x=1時(shí),函數(shù)取得最大值,其值為

當(dāng)時(shí),,即

    ∴函數(shù)只有一個(gè)零點(diǎn).  

(2)因?yàn)?img width=148 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/77/177677.gif">其定義域?yàn)?img width=49 height=21 src="http://thumb.zyjl.cn/pic1/1899/sx/58/177658.gif">,

所以     

①當(dāng)a=0時(shí),在區(qū)間上為增函數(shù),不合題意

②當(dāng)a>0時(shí),等價(jià)于,即

此時(shí)的單調(diào)遞減區(qū)間為

依題意,得解之得.         

③當(dāng)a<0時(shí),等價(jià)于,即·

此時(shí)的單調(diào)遞減區(qū)間為

綜上,實(shí)數(shù)a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù),其中    

(1)      當(dāng)滿(mǎn)足什么條件時(shí),取得極值?

(2)      已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)

(1)當(dāng)a=3時(shí),求fx)的零點(diǎn);

(2)求函數(shù)yf (x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省深圳市寶安區(qū)高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(1)當(dāng)為何值時(shí),取得最大值,并求出其最大值;

(2)若,,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三5月高考三輪模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)當(dāng)時(shí),證明:對(duì),

(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;

(3)數(shù)列,若存在常數(shù),都有,則稱(chēng)數(shù)列有上界。已知,試判斷數(shù)列是否有上界.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù) ,

   (1)當(dāng)  時(shí),求函數(shù)  的最小值;

   (2)當(dāng)  時(shí),討論函數(shù)  的單調(diào)性;

   (3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案