【題目】中心在原點(diǎn)的橢圓E的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)關(guān)于直線對(duì)稱,且橢圓E與坐標(biāo)軸的一個(gè)交點(diǎn)坐標(biāo)為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線l(直線的斜率k存在且不為0)交E于A,B兩點(diǎn),交x軸于點(diǎn)P點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為D,直線BD交x軸于點(diǎn)Q.試探究是否為定值?請(qǐng)說明理由.
【答案】(1);(2)為定值4,理由詳見解析.
【解析】
(1)橢圓E的右焦點(diǎn)為,得到,計(jì)算,得到答案.
(2)設(shè)直線l的方程為,聯(lián)立方程得到,計(jì)算得到,計(jì)算,得到答案.
(1)因?yàn)闄E圓E的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)關(guān)于直線對(duì)稱,
所以橢圓E的右焦點(diǎn)為,所以.
又橢圓E與坐標(biāo)軸的一個(gè)交點(diǎn)坐標(biāo)為,所以,又,
所以橢圓E的標(biāo)準(zhǔn)方程為.
(2)設(shè)直線l的方程為,,則點(diǎn),設(shè)
則點(diǎn),聯(lián)立直線l與橢圓E的方程有,
得,所以有,即
且,即直線BD的方程為
令\,得點(diǎn)Q的橫坐標(biāo)為,
代入得:,
所以,所以為定值4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(,e是自然對(duì)數(shù)的底數(shù),)存在唯一的零點(diǎn),則實(shí)數(shù)a的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)與兩定點(diǎn),連線的斜率之積等于的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線為.若曲線與軸的正半軸的交點(diǎn)為,且曲線上的相異兩點(diǎn)、滿足.
(1)求曲線的軌跡方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在(為自然對(duì)數(shù)的底數(shù))處的切線方程;
(2)若對(duì)任意的,均有,則稱為在區(qū)間上的下界函數(shù),為在區(qū)間上的上界函數(shù).
①若,求證:為在上的上界函數(shù);
②若,為在上的下界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且以橢圓上的點(diǎn)和長軸兩端點(diǎn)為頂點(diǎn)的三角形的面積的最大值為.
(1)求橢圓的方程;
(2)經(jīng)過定點(diǎn)的直線交橢圓于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,試證明:直線與軸的交點(diǎn)為一個(gè)定點(diǎn),且(為原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn),受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請(qǐng)240名同學(xué),每人隨機(jī)寫下兩個(gè)都小于1的正實(shí)數(shù)x,y組成的實(shí)數(shù)對(duì),再統(tǒng)計(jì)兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù)m;最后再根據(jù)計(jì)數(shù)m來估計(jì)π的值.假設(shè)統(tǒng)計(jì)結(jié)果是,那么可以估計(jì)的近似值為____________.(用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),滿足,則( )
A.函數(shù)有2個(gè)極小值點(diǎn)和1個(gè)極大值點(diǎn)
B.函數(shù)有2個(gè)極大值點(diǎn)和1個(gè)極小值點(diǎn)
C.函數(shù)有可能只有一個(gè)零點(diǎn)
D.有且只有一個(gè)實(shí)數(shù),使得函數(shù)有兩個(gè)零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線E:()與圓O:相交于A,B兩點(diǎn),且.過劣弧上的動(dòng)點(diǎn)作圓O的切線交拋物線E于C,D兩點(diǎn),分別以C,D為切點(diǎn)作拋物線E的切線,,相交于點(diǎn)M.
(1)求拋物線E的方程;
(2)求點(diǎn)M到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的方程為.在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,P的極坐標(biāo)為,直線l過點(diǎn)P.
(1)若直線l與OP垂直,求直線l的直角標(biāo)方程:
(2)若直線l與曲線C交于A,B兩點(diǎn),且,求直線l的傾斜角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com