【題目】某學(xué)生對(duì)一些對(duì)數(shù)進(jìn)行運(yùn)算,如圖表格所示:

x

0.21

0.27

1.5

2.8

lgx

2a+b+c﹣3(1)

6a﹣3b﹣2(2)

3a﹣b+c(3)

1﹣2a+2b﹣c(4)

x

3

5

6

7

lgx

2a﹣b(5)

a+c(6)

1+a﹣b﹣c(7)

2(a+c)(8)

x

8

9

14

lgx

3﹣3a﹣3c(9)

4a﹣2b(10)

1﹣a+2b(11)

現(xiàn)在發(fā)覺(jué)學(xué)生計(jì)算中恰好有兩次地方出錯(cuò),那么出錯(cuò)的數(shù)據(jù)是(
A.(3),(8)
B.(4),(11)
C.(1),(3)
D.(1),(4)

【答案】A
【解析】解:由題意可知:lg0.21=lg3+lg7﹣1=2a+b+c﹣3;
lg0.27=3lg3﹣2=6a﹣3b﹣2;
lg1.5=lg3+lg5﹣1=3a﹣b+c
lg2.8=2lg2+lg7﹣1,
lg3=2a﹣b,
lg5=a+c
lg6=lg2+lg3=1+a﹣b﹣c,
lg7=2a+2c,
lg8=3﹣3a﹣3c,
lg9=2lg3=4a﹣2b,
lg14=lg2+lg7=1﹣a+2b.
有上述各式,可以看出,lg3,lg9,lg0.27是正確的關(guān)系式,則lg7=2a+2c,lg0.21=lg3+lg7﹣1=2a+b+c﹣3,可知lg7錯(cuò)誤;
由lg5=a+c,lg1.5=lg3+lg5﹣1=3a﹣b+c,可知lg5錯(cuò)誤;
即(3),(8)錯(cuò)誤.
故選:A.
【考點(diǎn)精析】關(guān)于本題考查的對(duì)數(shù)的運(yùn)算性質(zhì),需要了解①加法:②減法:③數(shù)乘:才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng) 時(shí),不等式 恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[-5,-3]
B.[-6,1]
C.[-6,-2]
D.[-4,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且SABC= ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線和定點(diǎn) 是此曲線的左、右焦點(diǎn),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求直線的極坐標(biāo)方程;

(2)經(jīng)過(guò)點(diǎn)且與直線垂直的直線交此圓錐曲線于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=sin(2x+θ)+ cos(2x+θ),(|θ|< )的圖象關(guān)于點(diǎn) 對(duì)稱,則f(x)的增區(qū)間(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x)是定義在(0,+∞)上的非負(fù)可導(dǎo)函數(shù),且滿足xf′(x)+f(x)≤0,對(duì)任意正數(shù)a、b,若a<b,則必有(
A.af(b)≤bf(a)
B.bf(a)≤af(b)
C.af(a)≤f(b)
D.bf(b)≤f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,兩同心圓: . 為大圓上一動(dòng)點(diǎn),連結(jié)為坐標(biāo)原點(diǎn))交小圓于點(diǎn),過(guò)點(diǎn)軸垂線(垂足為),再過(guò)點(diǎn)作直線的垂線,垂足為.

(1)當(dāng)點(diǎn)在大圓上運(yùn)動(dòng)時(shí),求垂足的軌跡方程;

(2)過(guò)點(diǎn)的直線交垂足的軌跡于兩點(diǎn),若以為直徑的圓與軸相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是(

A.90cm2
B.129cm2
C.132cm2
D.138cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和.若a3=﹣6,S1=S5 , 則公差d=;Sn的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案