已知橢圓M的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),P是此橢圓上的一點(diǎn),且
PF1
PF2
=0
|PF1|
|PF2|
=8

(1)求橢圓M的方程;
(2)點(diǎn)A是橢圓M短軸的一個(gè)端點(diǎn),且其縱坐標(biāo)大于零,B、C是橢圓上不同于點(diǎn)A的兩點(diǎn),若△ABC的重心是橢圓的右焦點(diǎn),求直線(xiàn)BC的方程.
(1)設(shè)|
PF1
|=m,|
PF2
| =n
,
m2+n2=4
mn=8
m+n=2a
,
a=
5
,c=1,b=2,
x2
5
+
y2
4
=1

(2)設(shè)B(x1,y1),C(x2,y2),A(0,2),
由重心公式,得
x1+x2=3
y1+y2+2=0
,
∴線(xiàn)段BC的中點(diǎn)為D(
3
2
,-1
),
將點(diǎn)B,C代入橢圓方程,再相減,
(x1+x2)(x1-x2)
5
+
(y1+y2)(y1-y2
4
=0
,
k=
6
5
,
由點(diǎn)斜式得6x-5y-14=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•東城區(qū)二模)已知橢圓M的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),P是此橢圓上的一點(diǎn),且
PF1
PF2
=0
,
|PF1|
|PF2|
=8

(1)求橢圓M的方程;
(2)點(diǎn)A是橢圓M短軸的一個(gè)端點(diǎn),且其縱坐標(biāo)大于零,B、C是橢圓上不同于點(diǎn)A的兩點(diǎn),若△ABC的重心是橢圓的右焦點(diǎn),求直線(xiàn)BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓M的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),P是此橢圓上的一點(diǎn),且數(shù)學(xué)公式,數(shù)學(xué)公式
(1)求橢圓M的方程;
(2)點(diǎn)A是橢圓M短軸的一個(gè)端點(diǎn),且其縱坐標(biāo)大于零,B、C是橢圓上不同于點(diǎn)A的兩點(diǎn),若△ABC的重心是橢圓的右焦點(diǎn),求直線(xiàn)BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓M的兩個(gè)焦點(diǎn)分別為F1(-1,0),F2(1,0),P是橢圓上的一點(diǎn),且PF1⊥PF2,|PF1|·|PF2|=8.

(1)求橢圓M的方程;

(2)點(diǎn)A是橢圓M短軸的一個(gè)端點(diǎn),且其縱坐標(biāo)大于零,點(diǎn)B、C是橢圓M上不同于點(diǎn)A的兩點(diǎn),其中△ABC的重心是橢圓M的右焦點(diǎn),求直線(xiàn)BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年重慶十一中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓M的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),P是此橢圓上的一點(diǎn),且
(1)求橢圓M的方程;
(2)點(diǎn)A是橢圓M短軸的一個(gè)端點(diǎn),且其縱坐標(biāo)大于零,B、C是橢圓上不同于點(diǎn)A的兩點(diǎn),若△ABC的重心是橢圓的右焦點(diǎn),求直線(xiàn)BC的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案