(2010•石家莊二模)函數(shù)的反函數(shù)y=2x+3(x∈R)的反函數(shù)的解析式為( 。
分析:將y=2x+3作為方程利用指數(shù)式和對(duì)數(shù)式的互化解出x,然后確定原函數(shù)的值域即得反函數(shù)的值域,問題得解.
解答:解:由y=2x+3得x=log2(y-3)且y>3
即:y=log2(x-3),x>3
所以函數(shù)y=2x+3的反函數(shù)是y=log2(x-3)(x>3)
故選A.
點(diǎn)評(píng):本題屬于基礎(chǔ)性題,思路清晰、難度小,但解題中要特別注意指數(shù)式與對(duì)數(shù)式的互化,這是一個(gè)易錯(cuò)點(diǎn),另外原函數(shù)的值域的確定也是一個(gè)難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•石家莊二模)已知定義域?yàn)镽的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•石家莊二模)若函數(shù)y=f(x)的圖象如圖①所示,則圖②對(duì)應(yīng)函數(shù)的解析式可以表示為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•石家莊二模)已知△ABC中,內(nèi)角A、B、C的對(duì)邊的邊長(zhǎng)為a、b、c,且bcosC=(2a-c)cosB.
(Ⅰ)求角B的大小;
(Ⅱ)若y=cos2A+cos2C,求y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•石家莊二模)已知?jiǎng)訄AM經(jīng)過點(diǎn)G(0,-1),且與圓Q:x2+(y-1)2=8內(nèi)切.
(Ⅰ)求動(dòng)圓M的圓心的軌跡E的方程.
(Ⅱ)以m=(1,
2
)
為方向向量的直線l交曲線E于不同的兩點(diǎn)A、B,在曲線E上是否存在點(diǎn)P使四邊形OAPB為平行四邊形(O為坐標(biāo)原點(diǎn)).若存在,求出所有的P點(diǎn)的坐標(biāo)與直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•石家莊二模)如圖,已知全集為U,A,B是U的兩個(gè)子集,則陰影部分所表示的集合是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案