【題目】已知在直角坐標(biāo)系 xOy 中,圓錐曲線 C 的參數(shù)方程為 ( 為參數(shù)),定點(diǎn) , F1,F2 是圓錐曲線 C 的左,右焦點(diǎn).
(1)以原點(diǎn)為極點(diǎn)、 x 軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過(guò)點(diǎn) F1 且平行于直線AF2 的直線 l 的極坐標(biāo)方程;
(2)在(1)的條件下,設(shè)直線 l 與圓錐曲線 C 交于 E,F 兩點(diǎn),求弦 EF 的長(zhǎng).
【答案】
(1)
解:圓錐曲線 C 的參數(shù)方程為 ( 為參數(shù))
所以普通方程為 ,
所以
直線 l 極坐標(biāo)方程為:
(2)
解:
【解析】本題主要考查了橢圓的參數(shù)方程,解決問(wèn)題的關(guān)鍵是能夠熟練應(yīng)用相應(yīng)公式和方法將其轉(zhuǎn)化為直角坐標(biāo)方程,對(duì)于所有問(wèn)題都可以應(yīng)用轉(zhuǎn)化思想,化陌生為熟悉,將問(wèn)題轉(zhuǎn)化為直角坐標(biāo)方程問(wèn)題進(jìn)行解決
【考點(diǎn)精析】利用橢圓的參數(shù)方程對(duì)題目進(jìn)行判斷即可得到答案,需要熟知橢圓的參數(shù)方程可表示為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】佛山某中學(xué)高三(1)班排球隊(duì)和籃球隊(duì)各有10名同學(xué),現(xiàn)測(cè)得排球隊(duì)10人的身高(單位:cm)分別是:162、170、171、182、163、158、179、168、183、168,籃球隊(duì)10人的身高(單位:cm)分別是:170、159、162、173、181、165、176、168、178、179.
(1)請(qǐng)把兩隊(duì)身高數(shù)據(jù)記錄在如圖所示的莖葉圖中,并指出哪個(gè)隊(duì)的身高數(shù)據(jù)方差較小(無(wú)需計(jì)算);
(2)現(xiàn)從兩隊(duì)所有身高超過(guò)178cm的同學(xué)中隨機(jī)抽取三名同學(xué),則恰好兩人來(lái)自排球隊(duì)一人來(lái)自籃球隊(duì)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線 的參數(shù)方程為 ( 為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線 上的點(diǎn)按坐標(biāo)變換 得到曲線 .
(1)求曲線 的普通方程;
(2)若點(diǎn) 在曲線 上,點(diǎn) ,當(dāng)點(diǎn) 在曲線 上運(yùn)動(dòng)時(shí),求 中點(diǎn) 的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次數(shù)學(xué)測(cè)驗(yàn)共有10道選擇題,每道題共有四個(gè)選項(xiàng),且其中只有一個(gè)選項(xiàng)是正確的,評(píng)分標(biāo)準(zhǔn)規(guī)定:每選對(duì)1道題得5分,不選或選錯(cuò)得0分,某考試每道都選并能確定其中有6道題能選對(duì),其余4道題無(wú)法確定正確選項(xiàng),但這4道題中有2道能排除兩個(gè)錯(cuò)誤選項(xiàng),另2題只能排除一個(gè)錯(cuò)誤選項(xiàng),于是該生做這4道題時(shí)每道題都從不能排除的選項(xiàng)中隨機(jī)挑選一個(gè)選項(xiàng)做答,且各題做答互不影響.
(Ⅰ)求該考生本次測(cè)驗(yàn)選擇題得50分的概率;
(Ⅱ)求該考生本次測(cè)驗(yàn)選擇題所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(UT)=( )
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐曲線 ( 為參數(shù))和定點(diǎn) , F1 、 F2 是此圓錐曲線的左、右焦點(diǎn),以原點(diǎn) O 為極點(diǎn),以 x 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線 AF2 的直角坐標(biāo)方程;
(2)經(jīng)過(guò)點(diǎn) F1 且與直線AF2 垂直的直線 l 交此圓錐曲線于M,N 兩點(diǎn),求||MF1|-|NF1|| 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù) 的圖象和直線y=x無(wú)交點(diǎn),現(xiàn)有下列結(jié)論:
①方程f[f(x)]=x一定沒(méi)有實(shí)數(shù)根;
②若a>0,則不等式f[f(x)]>x對(duì)一切實(shí)數(shù)x都成立;
③若a<0,則必存存在實(shí)數(shù)x0 , 使f[f(x0)]>x0;
④若a+b+c=0,則不等式f[f(x)]<x對(duì)一切實(shí)數(shù)都成立;
⑤函數(shù) 的圖象與直線y=﹣x也一定沒(méi)有交點(diǎn).
其中正確的結(jié)論是(寫(xiě)出所有正確結(jié)論的編號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)的定義域中任意的x1、x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
③ >0;
④f( )< .
當(dāng)f(x)=2x時(shí),上述結(jié)論中正確的有( )個(gè).
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=3,an+1=can+m(c,m為常數(shù))
(1)當(dāng)c=1,m=1時(shí),求數(shù)列{an}的通項(xiàng)公式an;
(2)當(dāng)c=2,m=﹣1時(shí),證明:數(shù)列{an﹣1}為等比數(shù)列;
(3)在(2)的條件下,記bn= ,Sn=b1+b2+…+bn , 證明:Sn<1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com