精英家教網 > 高中數學 > 題目詳情
已知向量,若向量垂直,則k的值為( )
A.
B.7
C.
D.
【答案】分析:根據向量坐標運算的公式,結合,可得向量的坐標.再根據向量互相垂直,得到它們的數量積等于0,利用兩個向量數量積的坐標表達式列方程,解之可得k的值.
解答:解:∵
=(4-k,3+2k),=(5,1)
∵向量垂直,
∴()•()=0
可得:(4-k)×5+(3+2k)×1=0
∴20-5k+3+2k=0⇒k=
故選A
點評:本題根據兩個向量垂直,求參數k的值,著重考查了向量坐標的線性運算、向量數量積的坐標公式和兩個向量垂直的充要條件等知識點,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程.
(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設N是過點(-
4
17
,0),且以言
a
=(0,1)
為方向向量的直線上一動點,滿足
ON
=
OA
+
OB
(O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

在直角坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點Py軸作垂線段PP′,P′為垂足.

   (1)求線段PP′中點M的軌跡C的方程;

   (2)過點Q(-2,0)作直線l與曲線C交于AB兩點,設N是過點,且以為方向向量的直線上一動點,滿足O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:陜西省模擬題 題型:解答題

在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足,
(1)求線段PP′中點M的軌跡C的方程;
(2)過點Q(-2,0)作直線l與曲線C交于A、B兩點,設N是過點(,0),且以為方向向量的直線上一動點,滿足(O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:2012年陜西省西安市西工大附中高考數學三模試卷(理科)(解析版) 題型:解答題

在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程.
(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設N是過點(,0),且以言為方向向量的直線上一動點,滿足(O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年山東省日照市五蓮縣院西中學高考數學模擬試卷1(理科)(解析版) 題型:解答題

在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程.
(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設N是過點(,0),且以言為方向向量的直線上一動點,滿足(O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案