【題目】已知函數(shù)f(x)=xlnx的圖象上有A、B兩點,其橫坐標為x1 , x2(0<x1<x2<1)且滿足f(x1)=f(x2),若k=5( + ),且k為整數(shù)時,則k的值為( )(參考數(shù)據(jù):e≈2.72)
A.1
B.2
C.3
D.4
【答案】C
【解析】解:∵f(x)=xlnx,∴f′(x)=1+lnx,x>0, 由f′(x)=0,得x= ,
∵函數(shù)f(x)=xlnx的圖象上有A、B兩點,其橫坐標為x1 , x2(0<x1<x2<1)且滿足f(x1)=f(x2),
∴x1lnx1=x2lnx2 ,
(0<x1< <x2<1),如圖所示,
由 , ,
< + = ,
∵t= 關于x1單調遞減,0<x1< ,
∴ < ,∴5( + )< ,
∴k≤3.
∴k為整數(shù)時,則k的值為3.
故選:C.
【考點精析】本題主要考查了函數(shù)的極值與導數(shù)的相關知識點,需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知兩圓x2+y2﹣2x+10y﹣24=0和 x2+y2+2x+2y﹣8=0
(1)判斷兩圓的位置關系;(2)求公共弦所在的直線方程及公共弦的長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線l過定點P(1,1),且傾斜角為 ,以坐標原點為極點,x軸的正半軸為極軸的坐標系中,曲線C的極坐標方程為 .
(1)求曲線C的直角坐標方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點A,B,求|AB|及|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的是自動通風設施該設施的下部ABCD是等腰梯形,其中米,高米,米上部CmD是個半圓,固定點E為CD的中點是由電腦控制其形狀變化的三角通風窗陰影部分均不通風,MN是可以沿設施邊框上下滑動且始終保持和CD平行的伸縮橫桿.
設MN與AB之間的距離為x米,試將三角通風窗的通風面積平方米表示成關于x的函數(shù);
當MN與AB之間的距離為多少米時,三角通風窗的通風面積最大?求出這個最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且cos2A=3cos(B+C)+1.
(Ⅰ)求角A的大。
(Ⅱ)若cosBcosC=﹣ ,且△ABC的面積為2 ,求a.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將邊長為2的正方體沿對角線折起,得到三棱錐,則下列命題中,錯誤的為( )
A. 直線平面
B.
C. 三棱錐的外接球的半徑為
D. 若為的中點,則平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓()的右焦點為,右頂點為,已知,其中為原點,為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com