【題目】是定義在R上的函數(shù),對(duì)∈R都有,且當(dāng)>0時(shí),<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
【答案】(1) f(0)=0,f(-2)=2; (2)證明見(jiàn)解析;(3)f(x)max=2, f(x)min=-4.
【解析】
試題本題為抽象函數(shù)問(wèn)題,解決抽象函數(shù)的基本方法有兩種:一是賦值法,二是“打回原型”,本題第一步采用賦值法,先給x,y賦值0,求出f(0),再給x,y賦值-1,求出f(--2);判斷函數(shù)奇偶性,就是尋求f(-x)與f(x)的關(guān)系,給y賦值-x,得出f(-x)=-f(x),判斷出函數(shù)的奇偶性;再根據(jù)函數(shù)的奇偶性,得出函數(shù)圖像的對(duì)稱性,再利用賦值法判斷函數(shù)的單調(diào)性,根據(jù)函數(shù)的奇偶性和單調(diào)性求出函數(shù)的最值.
試題解析:
(1)f(x)的定義域?yàn)镽,
令x=y=0,則f(0)=f(0)+f(0),
∴f(0)=0,
∵f(-1)=1,
∴f(-2)=f(-1)+f(-1)=2,
(2)令y=-x,則f(x-x)=f(x)+f(-x),
∴f(-x)+f(x)=f(0)=0,
∴f(-x)=-f(x),
∴f(x)是奇函數(shù).
(3)設(shè)x2>x1,
f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)
∵x2-x1>0,∴f(x2-x1)<0,
∴f(x2)-f(x1)<0,
即f(x2)<f(x1),
∴f(x)在R上為減函數(shù).
∴f(2)=-f(-2)=-2,
∴f(4)=f(2)+f(2)=-4,
∵f(x)在[-2,4]上為減函數(shù),
∴f(x)max=f(-2)=2,
f(x)min=f(4)=-4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)都是正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , Sn=an2+ an , n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足:b1=1,bn﹣bn﹣1=2an(n≥2),求數(shù)列{ }的前n項(xiàng)和Tn
(3)若Tn≤λ(n+4)對(duì)任意n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) 的定義域是R,對(duì)于任意實(shí)數(shù) ,恒有,且當(dāng) 時(shí), 。
(1)求證: ,且當(dāng) 時(shí),有 ;
(2)判斷 在R上的單調(diào)性;
(3)設(shè)集合A=,B=,若A∩B=,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)= sin2x﹣ cos2x+1的圖象向左平移 個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,則下列關(guān)予函數(shù)y=g(x)的說(shuō)法錯(cuò)誤的是( )
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對(duì)稱軸為直線x=
C. g(x)dx=
D.函數(shù)y=g(x)在區(qū)間[ , ]上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).
(1)排成前后兩排,前排3人,后排4人;(2)全體站成一排,甲不站排頭也不站排尾;
(3)全體站成一排,女生必須站在一起;(4)全體站成一排,男生互不相鄰.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若某一等差數(shù)列的首項(xiàng)為,公差為展開(kāi)式中的常數(shù)項(xiàng),其中是除以19的余數(shù),則此數(shù)列前多少項(xiàng)的和最大?并求出這個(gè)最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|.
(1)作出函數(shù)f(x)的圖象;
(2)若不等式 ≤f(x)有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時(shí),求f(x)的值域;
(2)當(dāng)x∈[﹣1,1]時(shí),求f(x)的最小值h(a);
(3)是否存在實(shí)數(shù)m、n,同時(shí)滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域?yàn)?/span>[m,n]時(shí),其值域?yàn)?/span>[m2,n2],若存在,求出m、n的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解關(guān)于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集為(﹣1,3),求實(shí)數(shù)a,b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com