如圖,兩條相交線段、的四個端點都在拋物線上,其中,直線的方程為,直線的方程為

(1)若,求的值;
(2)探究:是否存在常數(shù),當(dāng)變化時,恒有?

(1)   (2)

解析試題分析:
(1)聯(lián)立直線與拋物線方程可以求出的坐標(biāo),設(shè)出A點的坐標(biāo),且滿足A點在橢圓上和,即根據(jù)AB為角平分線且與x軸垂直可得AP與AQ所在直線的傾斜角互為補角(斜率互為相反數(shù)),故兩條件聯(lián)立即可求出m的值.
(2) 聯(lián)立直線與橢圓方程得到關(guān)于的坐標(biāo)的韋達定理,由(1)這種特殊情況可得滿足題意的只可能是,故一一帶入驗證是否能使得即可.
試題解析:
(1)由,
解得,.    2分
因為,所以
設(shè),則,
化簡得,    5分
,聯(lián)立方程組,解得,或
(也可以從,來解得)
因為平分,所以不合,故.    7分
(2)設(shè),,由,得
,.    9分
若存在常數(shù),當(dāng)變化時,恒有,則由(Ⅰ)知只可能
當(dāng)時,等價于,
,

,此式恒成立.
(也可以從恒成立來說明)
所以,存在常數(shù),當(dāng)變化時,恒有.    14分
考點:斜率 拋物線

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線=1的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A、B兩點,F(xiàn)1為左焦點.
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線C是焦點在x軸上的橢圓,求m的取值范圍;
(2)設(shè)m=4,曲線C與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線C交于不同的兩點M,N,直線y=1與直線BM交于點G.求證:A,G,N三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

是否同時存在滿足下列條件的雙曲線,若存在,求出其方程,若不存在,說明理由.
(1)焦點在軸上的雙曲線漸近線方程為;
(2)點到雙曲線上動點的距離最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,若,且.
(1)求動點的軌跡的方程;
(2)已知定點,若斜率為的直線過點并與軌跡交于不同的兩點,且對于軌跡上任意一點,都存在,使得成立,試求出滿足條件的實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過雙曲線的左焦點,作傾斜角為的直線交該雙曲線右支于點,若,且,則雙曲線的離心率為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線與拋物線沒有交點;方程表示橢圓;若為真命題,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1、B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過B1作直線交橢圓于P、Q兩點,使PB2⊥QB2,求△PB2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面2m,水面寬4m.水位下降1m后,水面寬    m.

查看答案和解析>>

同步練習(xí)冊答案