【題目】設(shè)z=kx+y,其中實(shí)數(shù)x,y滿足 ,若z的最大值為12,則實(shí)數(shù)k= .
【答案】2
【解析】解:可行域如圖:
由 得:A(4,4),
同樣地,得B(0,2),
z=kx+y,即y=﹣kx+z,分k>0,k<0兩種情況.
當(dāng)k>0時(shí),
目標(biāo)函數(shù)z=kx+y在A點(diǎn)取最大值,即直線z=kx+y在y軸上的截距z最大,即12=4k+4,得k=2;
當(dāng)k<0時(shí),
①當(dāng)k>﹣ 時(shí),目標(biāo)函數(shù)z=kx+y在A點(diǎn)(4,4)時(shí)取最大值,即直線z=kx+y在y軸上的截距z最大,
此時(shí),12=4k+4,
故k=2.
②當(dāng)k 時(shí),目標(biāo)函數(shù)z=kx+y在B點(diǎn)(0,2)時(shí)取最大值,即直線z=kx+y在y軸上的截距z最大,
此時(shí),12=0×k+2,
故k不存在.
綜上,k=2.
所以答案是:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型水果超市每天以元/千克的價(jià)格從水果基地購(gòu)進(jìn)若干水果,然后以元/千克的價(jià)格出售,若有剩余,則將剩下的水果以元/千克的價(jià)格退回水果基地,為了確定進(jìn)貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天記錄的各日需求量的頻率代替各日需求量的概率.
(1)求該超市水果日需求量(單位:千克)的分布列;
(2)若該超市一天購(gòu)進(jìn)水果千克,記超市當(dāng)天水果獲得的利潤(rùn)為(單位:元),求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)正整數(shù)n,記In={1,2,3…,n},Pn={ |m∈In , k∈In}.
(1)求集合P7中元素的個(gè)數(shù);
(2)若Pn的子集A中任意兩個(gè)元素之和不是整數(shù)的平方,則稱A為“稀疏集”.求n的最大值,使Pn能分成兩個(gè)不相交的稀疏集的并集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)監(jiān)測(cè),在海濱某城市附近的海面有一臺(tái)風(fēng). 臺(tái)風(fēng)中心位于城市的東偏南方向、距離城市的海面處,并以的速度向西偏北方向移動(dòng)(如圖示).如果臺(tái)風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺(tái)風(fēng)移動(dòng)的方向與速度不變,那么該城市受臺(tái)風(fēng)侵襲的時(shí)長(zhǎng)為_____ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某市組織的一次數(shù)學(xué)競(jìng)賽中全體參賽學(xué)生的成績(jī)近似服從正態(tài)分布N(60,100),已知成績(jī)?cè)?0分以上的學(xué)生有13人.
(1)求此次參加競(jìng)賽的學(xué)生總數(shù)共有多少人?
(2)若計(jì)劃獎(jiǎng)勵(lì)競(jìng)賽成績(jī)排在前228名的學(xué)生,問(wèn)受獎(jiǎng)學(xué)生的分?jǐn)?shù)線是多少?
(參考數(shù)據(jù):若,則;;)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)將100名髙一新生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”
| 0.05 | 0.01 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(I)從乙班隨機(jī)抽取2名學(xué)生的成績(jī),記“成績(jī)優(yōu)秀”的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望;
(II)根據(jù)頻率分布直方圖填寫下面2 x2列聯(lián)表,并判斷是否有95%的把握認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).
甲班(A方式) | 乙班(B方式) | 總計(jì) | |
成績(jī)優(yōu)秀 | |||
成績(jī)不優(yōu)秀 | |||
總計(jì) |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y)且當(dāng)x>0,f(x)<0.
給出下列四個(gè)結(jié)論:
①f(0)=0; ②f(x)為偶函數(shù);
③f(x)為R上減函數(shù); ④f(x)為R上增函數(shù).
其中正確的結(jié)論是( )
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線交曲線于,兩點(diǎn).
(Ⅰ)寫出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,求點(diǎn)到,兩點(diǎn)的距離之積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com