【題目】已知直角梯形,如圖(1)所示, , , , ,連接,將沿折起,使得平面平面,得到幾何體,如圖(2)所示.
(1)求證: 平面;
(2)若,求二面角的大小.
【答案】(1)見解析(2) 45°
【解析】試題分析:(1)利用平幾知識計算可得,再根據(jù)面面垂直性質(zhì)定理可得結(jié)論(2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),利用垂直關(guān)系解方程組得各面法向量,利用向量數(shù)量積求法向量夾角,最后根據(jù)二面角與法向量夾角相等或互補關(guān)系求二面角大小
試題解析:(1)證明:如圖(1),過作交于,得正方形,
∴
∴
∴,
∴
∴
如圖(2),∵平面平面,且兩面交線為, 平面
∴平面
(2)解:取中點,連接,則平面
∵分別為中點
∴
∴
以為原點, 所在的直線為軸、軸、軸,建立如圖坐標(biāo)系,
, , ,
∵
∴
∴
∴
∴,
設(shè)為平面的一個法向量,則
取,則
∴
又為平面的一個法向量
∴
∵二面角為銳角
∴二面角為45°.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位建立坐標(biāo)系,已知直線l的極坐標(biāo)方程為2ρcosθ+ρsinθ=3,曲線C的參數(shù)方程為 (α為參數(shù)).
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)P(1,1),設(shè)直線l與曲線C相交于A、B兩點,求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) ,
(1)若,且對,函數(shù)的值域為,求的表達式;
(2)在(1)的條件下,函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍;
(3)設(shè),,且為偶函數(shù),證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A. 先把高二年級的2000名學(xué)生編號為1到2000,再從編號為1到50的50名學(xué)生中隨機抽取1名學(xué)生,其編號為,然后抽取編號為, , 的學(xué)生,這樣的抽樣方法是系統(tǒng)抽樣法
B. 線性回歸直線一定過樣本中心點
C. 若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1
D. 若一組數(shù)據(jù)1、、3的平均數(shù)是2,則該組數(shù)據(jù)的方差是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,點為短軸的一個端點, ,若點在橢圓上,則點稱為點的一個“橢點”.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點,且兩點的“橢點”分別為,以為直徑的圓經(jīng)過坐標(biāo)原點,試求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2018年的利潤(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com