(2013•延慶縣一模)設(shè)縣x,y滿足約束條件
x+y≥1
x-2y≥-2
3x-2y≤3
,若z=x2+4y2,則z的取值范圍是
[
4
5
,
53
2
]
[
4
5
53
2
]
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=x2+4y2表示中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓,研究當(dāng)長軸變化時,z的變化情況即可求得z的取值范圍.
解答:解:根據(jù)約束條件畫出可行域
z=x2+4y2表示中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓,如圖.
當(dāng)此橢圓與直線x+y=1相切時,z=x2+4y2最小,
z=x2+4y2
x+y=1
消去x得:5y2-2y+1-z=0,
△=0得z=
4
5
,即最小距離為
4
5
,
當(dāng)此橢圓過點(diǎn)A(
5
2
9
4
)時,z=x2+4y2最大,最大為z=(
5
2
2+4(
9
4
2=
53
2

故答案為:[
4
5
,
53
2
]
點(diǎn)評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•延慶縣一模)空氣質(zhì)量指數(shù)PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,就代表空氣污染越嚴(yán)重:
PM2.5
日均濃度
0~35 35~75 75~115 115~150 150~250 >250
空氣質(zhì)量級別 一級 二級 三級 四級 五級 六級
空氣質(zhì)量類型 優(yōu) 輕度污染 中度污染 重度污染 嚴(yán)重污染
甲、乙兩城市2013年2月份中的15天對空氣質(zhì)量指數(shù)PM2.5進(jìn)行監(jiān)測,獲得PM2.5日均濃度指數(shù)數(shù)據(jù)如莖葉圖所示:
(Ⅰ)根據(jù)你所學(xué)的統(tǒng)計知識估計甲、乙兩城市15天內(nèi)哪個城市空氣質(zhì)量總體較好?(注:不需說明理由)
(Ⅱ)在15天內(nèi)任取1天,估計甲、乙兩城市空氣質(zhì)量類別均為優(yōu)或良的概率;
(Ⅲ)在乙城市15個監(jiān)測數(shù)據(jù)中任取2個,設(shè)X為空氣質(zhì)量類別為優(yōu)或良的天數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•延慶縣一模)已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率為2,一個焦點(diǎn)與拋物線y2=16x的焦點(diǎn)相同,則雙曲線的漸近線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•延慶縣一模)已知函數(shù)f(x)=ax3+bx2-2(a≠0)有且僅有兩個不同的零點(diǎn)x1,x2,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•延慶縣一模)已知函數(shù)f(x)=
log4x, x>0
3x, x≤0
,則f[f(
1
16
)]
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•延慶縣一模)如圖,四棱錐P-ABCD的底面ABCD為菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E為PA的中點(diǎn).
(Ⅰ)求證:PC∥平面EBD;
(Ⅱ)求三棱錐C-PAD的體積VC-PAD
(Ⅲ)在側(cè)棱PC上是否存在一點(diǎn)M,滿足PC⊥平面MBD,若存在,求PM的長;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案