【題目】已知函數(shù),其中
(1)當(dāng)時(shí),求函數(shù)在上的值域;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的取值范圍.
【答案】(1) ;(2) .
【解析】試題分析:(1)求導(dǎo),再利用導(dǎo)數(shù)工具即可求得正解;(2)求導(dǎo)得 ,再分 和 兩種情況進(jìn)行討論;
試題解析:(1)解: 時(shí),
則
令得列表
| |||||||
+ |
| - | + | ||||
單調(diào)遞增 |
| 單調(diào)遞減 | 單調(diào)遞增 | 21 |
由上表知函數(shù)的值域?yàn)?/span>
(2)方法一:
①當(dāng)時(shí), ,函數(shù)在區(qū)間單調(diào)遞增
所以
即(舍)
②當(dāng)時(shí), ,函數(shù)在區(qū)間單調(diào)遞減
所以
符合題意
③當(dāng)時(shí),
當(dāng)時(shí), 區(qū)間在單調(diào)遞減
當(dāng)時(shí), 區(qū)間在單調(diào)遞增
所以
化簡(jiǎn)得:
即
所以或(舍)
注:也可令
則
對(duì)
在單調(diào)遞減
所以不符合題意
綜上所述:實(shí)數(shù)取值范圍為
方法二:
①當(dāng)時(shí), ,函數(shù)在區(qū)間單調(diào)遞減
所以
符合題意 …………8分
②當(dāng)時(shí), ,函數(shù)在區(qū)間單調(diào)遞增
所以 不符合題意
③當(dāng)時(shí),
當(dāng)時(shí), 區(qū)間在單調(diào)遞減
當(dāng)時(shí), 區(qū)間在單調(diào)遞增
所以 不符合題意
綜上所述:實(shí)數(shù)取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解籃球愛(ài)好者小李的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小李某月1號(hào)到5號(hào)每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的關(guān)系:
時(shí)間 | 1 | 2 | 3 | 4 | 5 |
命中率 | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
小李這5天的平均投籃命中率;用線性回歸分析的方法,預(yù)測(cè)小李該月6號(hào)打6小時(shí)籃球的投籃命中率.
附:線性回歸方程中系數(shù)計(jì)算公式, ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a<0).
(Ⅰ)當(dāng)a=-3時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《國(guó)務(wù)院關(guān)于修改〈中華人民共和國(guó)個(gè)人所得稅法實(shí)施條例〉的決定》已于2008年3月1日起施行,個(gè)人所得稅稅率表如下:
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過(guò)500元的部分 | 5% |
2 | 超過(guò)500至2 000元的部分 | 10% |
3 | 超過(guò)2 000元至5 000元的部分 | 15% |
… | … | … |
9 | 超過(guò)100 000元的部分 | 45% |
注:本表所示全月應(yīng)納稅所得額為每月收入額減去2 000元后的余額.
(1)若某人2008年4月份的收入額為4 200元,求該人本月應(yīng)納稅所得額和應(yīng)納的稅費(fèi);
(2)設(shè)個(gè)人的月收入額為x元,應(yīng)納的稅費(fèi)為y元.當(dāng)0<x≤3 600時(shí),試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題12分)根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.某城市環(huán)保部門(mén)隨機(jī)抽取了一居民區(qū)去年20天PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:
]
組別 | PM2.5濃度(微克/立方米) | 頻數(shù)(天) | 頻率 |
第一組 | 3 | 0.15 | |
第二組 | 12 | 0.6 | |
第三組 | 3 | 0.15 | |
第四組 | 2 | 0.1 |
(Ⅰ)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;
(Ⅱ)求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù)
(1).討論函數(shù)的單調(diào)性;
(2).若不等式對(duì)任意的恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地上年度電價(jià)為0.8元,年用電量為1億千瓦時(shí).本年度計(jì)劃將電價(jià)調(diào)至0.55元~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至元,則本年度新增用電量(億千瓦時(shí))與元成反比例.又當(dāng)時(shí),.
(1)求與之間的函數(shù)關(guān)系式;
(2)若每千瓦時(shí)電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少時(shí),本年度電力部門(mén)的收益將比上年增加20%?[收益用電量(實(shí)際電價(jià)-成本價(jià))]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),存在使不等式成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在直線的下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com