已知一幾何體的三視圖如圖所示,則其體積為
2
3
2
3
分析:由三視圖可知:原幾何體是一個(gè)四棱錐,其中底面是一個(gè)邊長(zhǎng)為
2
的正方形,高為1.據(jù)此可計(jì)算出答案.
解答:解:由三視圖可知:原幾何體是一個(gè)四棱錐,其中底面是一個(gè)邊長(zhǎng)為
2
的正方形,高為1.
∴V四棱錐P-ABCD=
1
3
×(
2
)2×1=
2
3

故答案為
2
3
點(diǎn)評(píng):由三視圖正確恢復(fù)原幾何體是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一幾何體的三視圖如下,則這幾何體的外接球的表面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知一幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
19
3
3
π+40π
B、
13
3
3
π+40π
C、
19
3
3
π+40
D、
13
3
3
π+40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一幾何體的三視圖如下,其中正視圖,側(cè)視圖均為矩形,俯視圖為等腰直角三角形,則該幾何體的體積為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一幾何體的三視圖如圖,主視圖和左視圖都是矩形,俯視圖為正方形,在該幾何體上任意選擇4個(gè)頂點(diǎn),以這4個(gè)點(diǎn)為頂點(diǎn)的幾何形體可能是(  )
①矩形;
②有三個(gè)面為直角三角形,有一個(gè)面為等腰三角形的四面體;
③每個(gè)面都是直角三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一幾何體的三視圖如圖,主視圖與左視圖為全等的等腰直角三角形,直角邊長(zhǎng)為6,俯視圖為正方形,(1)求點(diǎn)A到面SBC的距離;(2)有一個(gè)小正四棱柱內(nèi)接于這個(gè)幾何體,棱柱底面在面ABCD內(nèi),其余頂點(diǎn)在幾何體的棱上,當(dāng)棱柱的底面邊長(zhǎng)與高取何值時(shí),棱柱的體積最大,并求出這個(gè)最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案