精英家教網 > 高中數學 > 題目詳情

【題目】

近年來,隨著雙十一、雙十二等網絡活動的風靡,各大網商都想出了一系列的降價方案,以此來提高自己的產品利潤. 已知在2016年雙十一某網商的活動中,某店家采取了兩種優(yōu)惠方案以供選擇:

方案一:購物滿400元以上的,超出400元的部分只需支出超出部分的x%;

方案二:購物滿400元以上的,可以參加電子抽獎活動,即從1,2,3,4,5,6這6張卡牌中任取2張,將得到的數字相加,所得結果與享受優(yōu)惠如下:

數字和

[3,4]

[5,7]

[8,9]

[10,11]

實際付款

原價

9折

8折

5折

(Ⅰ)若某顧客消費了800元,且選擇方案二,求該顧客只需支付640元的概率;

(Ⅱ)若某顧客購物金額為500元,她選擇了方案二后,得到的數字之和為6,此時她發(fā)現使用方案一、二最后支付的金額相同,求x的值.

【答案】(1) (2)50

【解析】試題分析:(1) 該顧客花了640元,說明所取數字之和在[8,9]之間,故滿足條件的為(3,5),(3,6),(4,5),(2,6),總的事件個數為15,從而得到所求概率;(2) 依題意,該顧客需要支付450元,故400x%×100450,解得x50.

試題解析:

依題意,所有的情況為(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6).

(Ⅰ)若該顧客花了640元,說明所取數字之和在[8,9]之間,故滿足條件的為(3,5),(3,6),(4,5),(2,6),所求概率為.

(Ⅱ)依題意,該顧客需要支付450元,故400x%×100450,解得x50.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】.

(1)若直線與和圖象均相切,求直線的方程;

(2)是否存在使得按某種順序組成等差數列?若存在,這樣的有幾個?若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,平面α與棱AB,AC,A1C1,A1B1分別交于點E,F,G,H,且直線AA1∥平面α.有下列三個命題:①四邊形EFGH是平行四邊形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正確的命題有(  )

A. ①② B. ②③

C. ①③ D. ①②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知{an}是等差數列,{bn}是各項均為正數的等比數列,且b1a11,b3a4,b1b2b3a3a4.

(1)求數列{an},{bn}的通項公式;

(2)cnanbn,求數列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)的定義域為D,如果x∈D,y∈D,使得f(x)=-f(y)成立,則稱函數f(x)為“Ω函數”.給出下列四個函數:①y=sin x;②y=2x;③y=;④f(x)=ln x.則其中“Ω函數”共有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知各項都為正數的數列{an}滿足a1=1, =2an+1(an+1)-an.

(Ⅰ)求數列{an}的通項公式;

(Ⅱ)設bn,求數列{an·bn}的前n項和Tn.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}是等差數列,a104a3,a43a17.

(1)求通項公式an

(2)bnan2an2,求數列{bn}的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了減少霧霾,還城市一片藍天,某市政府于12月4日到12月31日在主城區(qū)實行車輛限號出行政策,鼓勵民眾不開車低碳出行,某甲乙兩個單位各有200名員工,為了了解員工低碳出行的情況,統(tǒng)計了12月5日到12月14日共10天的低碳出行的人數,畫出莖葉圖如下:

(1)若甲單位數據的平均數是122,求;

(2)現從如圖的數據中任取4天的數據(甲、乙兩單位中各取2天),記其中甲、乙兩單位員工低碳出行人數不低于130人的天數為, ,令,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正方形與梯形所在平面互相垂直,,,,點中點 .

(1)求證:平面

(2)求三棱錐的體積.

查看答案和解析>>

同步練習冊答案