【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線的方程為.若三角形的三個(gè)頂點(diǎn)都在拋物線上,且,則稱該三角形為“向心三角形”.
(1)是否存在“向心三角形”,其中兩個(gè)頂點(diǎn)的坐標(biāo)分別為和?說明理由;
(2)設(shè)“向心三角形”的一邊所在直線的斜率為,求直線的方程;
(3)已知三角形是“向心三角形”,證明:點(diǎn)的橫坐標(biāo)小于.
【答案】(1)不存在,理由詳見解析;(2);(3)證明見解析.
【解析】
(1)由題意可知,點(diǎn)為的重心,假設(shè)存在一點(diǎn)使得“向心三角形”存在,求得該點(diǎn)的坐標(biāo),代入拋物線的方程,進(jìn)行判斷即可;
(2)設(shè)點(diǎn)、、,利用點(diǎn)差法求得,根據(jù)重心的坐標(biāo)公式,求出線段的中點(diǎn)坐標(biāo),然后利用點(diǎn)斜式方程可得出直線的方程;
(3)由,等式兩邊平方,利用基本不等式可得出,結(jié)合等式可求出,進(jìn)而證明結(jié)論成立.
(1)由題意可知,拋物線的標(biāo)準(zhǔn)方程為,
由,可知,為重心,
設(shè)存在點(diǎn)“向心三角形”,其中兩個(gè)頂點(diǎn)的坐標(biāo)分別為和,另外的頂點(diǎn)為,
由,解得:,顯然,
故不存在“向心三角形”,其中兩個(gè)頂點(diǎn)的坐標(biāo)分別為和;
(2)設(shè)、、,
由,兩式相減,得,所以,所以,
由題意可知,,所以,則,
由,所以,所以,線段的中點(diǎn),
因此,直線的方程為,整理得.
因此,直線的方程;
(3)由(2)可知,則,①
由,,
平方可得,當(dāng)且僅當(dāng)時(shí)取等號,顯然,
所以,即,
將①代入可得,解得,
所以點(diǎn)的橫坐標(biāo)小于.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓與直線相切,點(diǎn)A為圓上一動(dòng)點(diǎn),軸于點(diǎn)N,且動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)P,Q是曲線C上兩動(dòng)點(diǎn),線段的中點(diǎn)為T,,的斜率分別為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,,且對任意的正整數(shù),都有,其中常數(shù).設(shè)﹒
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若且,設(shè),證明數(shù)列是等比數(shù)列;
(3)若對任意的正整數(shù),都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(Ⅰ)若,證明函數(shù)有唯一的極小值點(diǎn);
(Ⅱ)設(shè)且,記函數(shù)的最大值為M,求使得的a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在直角梯形中,,,,過作,垂足為,現(xiàn)將沿折疊,使得.取的中點(diǎn),連接,,,如圖乙.
甲 乙
(1)求證:平面;
(2)求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;
(2)試估計(jì)該公司投入萬元廣告費(fèi)用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:已知為實(shí)數(shù),若關(guān)于的不等式有非空解集,則,寫出該命題的逆命題、否命題、逆否命題,并判斷這些命題的真假.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,點(diǎn)分別為棱的中點(diǎn).
(Ⅰ)求證:∥平面
(Ⅱ)求證:平面平面;
(Ⅲ)在線段上是否存在一點(diǎn),使得直線與平面所成的角為300?如果存在,求出線段的長;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com