已知函數(shù).
(1)是否存在點,使得函數(shù)的圖像上任意一點P關(guān)于點M對稱的點Q也在函數(shù)的圖像上?若存在,求出點M的坐標;若不存在,請說明理由;
(2)定義,其中,求;
(3)在(2)的條件下,令,若不等式恒成立,求實數(shù)的取值范圍.
(1)存在,且點的坐標為;(2);(3)的取值范圍是.

試題分析:(1)先假設(shè)點的坐標,根據(jù)圖象對稱的定義列式求出點的坐標即可;(2)利用(1)中條件的條件,并注意到定義中第項與倒數(shù)第項的和這一條件,并利用倒序相加法即可求出的表達式,進而可以求出的值;(3)先利用之間的關(guān)系求出數(shù)列的通項公式,然后在不等式中將與含的代數(shù)式進行分離,轉(zhuǎn)化為恒成立的問題進行處理,最終利用導(dǎo)數(shù)或作差(商)法,通過利用數(shù)列的單調(diào)性求出的最小值,最終求出實數(shù)的取值范圍.
試題解析:(1)假設(shè)存在點,使得函數(shù)的圖像上任意一點P關(guān)于點M對稱的點Q也在函數(shù)的圖像上,則函數(shù)圖像的對稱中心為.
,得,
恒成立,所以解得
所以存在點,使得函數(shù)的圖像上任意一點關(guān)于點M對稱的點也在函數(shù)的圖像上.
(2)由(1)得.
,則.
因為①,
所以②,
由①+②得,所以.
所以.
(3)由(2)得,所以.
因為當時,.
所以當時,不等式恒成立.
設(shè),則.
時,,上單調(diào)遞減;
時,上單調(diào)遞增.
因為,所以,
所以當時,.
,得,解得.
所以實數(shù)的取值范圍是.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)滿足的圖像在處的切線垂直于直線.
(1)求的值;
(2)若方程有實數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值.
(1)求實數(shù)的值;
(2)若關(guān)于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;
(3)若,使成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是自然對數(shù)的底數(shù)).
(1)若曲線處的切線也是拋物線的切線,求的值;
(2)當時,是否存在,使曲線在點處的切線斜率與 在
上的最小值相等?若存在,求符合條件的的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為常數(shù)).
(1)當時,求的單調(diào)遞減區(qū)間;
(2)若,且對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是實數(shù),函數(shù),分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱在區(qū)間上單調(diào)性一致.
(Ⅰ)設(shè),若函數(shù)在區(qū)間上單調(diào)性一致,求實數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)在以為端點的開區(qū)間上單調(diào)性一致,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知處取得極值。
(Ⅰ)證明:;
(Ⅱ)是否存在實數(shù),使得對任意?若存在,求的所有值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當時,函數(shù)取得極大值,求實數(shù)的值;
(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)存在導(dǎo)數(shù),則存在
,使得. 試用這個結(jié)論證明:若函數(shù)
(其中),則對任意,都有;
(Ⅲ)已知正數(shù)滿足,求證:對任意的實數(shù),若時,都
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖像中有一個是函數(shù)的導(dǎo)數(shù) 的圖像,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案