【題目】已知關(guān)于x的不等式ax2+bx+c>0的解集為{x|2<x<3},求關(guān)于x的不等式cx2+bx+a<0的解集.
【答案】或.
【解析】
根據(jù)一元二次不等式的解,得出對應(yīng)一元二次方程的解,進而得到關(guān)系,化簡不等式,即可求解.
法一:由不等式ax2+bx+c>0的解集為{x|2<x<3}可知,a<0,
且2和3是方程ax2+bx+c=0的兩根,
由根與系數(shù)的關(guān)系可知.
由a<0,故不等式cx2+bx+a<0化為,,
即,解得或,
所以不等式cx2+bx+a<0的解集為或.
法二:由不等式ax2+bx+c>0的解集為{x|2<x<3}可知,
a<0,且2和3是方程ax2+bx+c=0的兩根,
所以ax2+bx+c=a(x-2)(x-3)=ax2-5ax+6ab=-5a,c=6a,
故不等式cx2+bx+a<0,即6ax2-5ax+a<06a,
故原不等式的解集為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,圓關(guān)于直線對稱,圓心在第二象限,半徑為.
(1)求圓的方程;
(2)直線與圓相切,且在軸、軸上的截距相等,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次數(shù)學(xué)知識比賽中共有6個不同的題目,每位同學(xué)從中隨機抽取3個題目進行作答,已知這6個題目中,甲只能正確作答其中的4個,而乙正確作答每個題目的概率均為,且甲、乙兩位同學(xué)對每個題目的作答都是相互獨立、互不影響的.
(1)求乙同學(xué)答對2個題目的概率;
(2)若甲、乙兩位同學(xué)答對題目個數(shù)分別是m,n,分別求出甲、乙兩位同學(xué)答對題目個數(shù)m,n的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ當(dāng)時,取得極值,求的值并判斷是極大值點還是極小值點;
Ⅱ當(dāng)函數(shù)有兩個極值點,,且時,總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知為圓的直徑,點為線段上一點,且,點為圓上一點,且.點在圓所在平面上的正投影為點,.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個單位長度,再向下平移個單位長度,得到函數(shù)的圖像.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在銳角中,角的對邊分別為,若,,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知sin(-π+θ)+2cos(3π-θ)=0,則;
(2)已知.
①化簡f(α);
②若f(α),且,求cos α-sin α的值;
③若,求f(α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,數(shù)列滿足條件:對于,,且,并有關(guān)系式:,又設(shè)數(shù)列滿足(且,).
(1)求證數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;
(2)試問數(shù)列是否為等差數(shù)列,如果是,請寫出公差,如果不是,說明理由;
(3)若,記,,設(shè)數(shù)列的前項和為,數(shù)列的前項和為,若對任意的,不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程是(φ為參數(shù),a>0),直線l的參數(shù)方程是(t為參數(shù)),曲線C與直線l有一個公共點在x軸上,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立坐標(biāo)系.
(1)求曲線C的普通方程;
(2)若點A(ρ1,θ),B(ρ2,θ+),C(ρ3,θ+)在曲線C上,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com