【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)的直線與該橢圓交于兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
【答案】(1);(2).
【解析】
試題(1)先設(shè)出橢圓方程為,再根據(jù)條件離心率為及橢圓上的點(diǎn),代入即可得到橢圓方程;(2)先設(shè)出直線方程及,然后聯(lián)立橢圓方程得到及.再由直線的斜率依次成等比數(shù)列得到,由得到.代入中及直線的斜率存在得到,且,然后由點(diǎn)到直線的距離公式及兩點(diǎn)間距離公式得到面積.最后由基本不等式得到,從而得到面積的取值范圍.
試題解析:(1)由題意可設(shè)橢圓方程為,則(其中,),且,故.
所以橢圓的方程為.
(2)由題意可知,直線的斜率存在且不為0.故可設(shè)直線:,
設(shè),
由,消去得,
則,
且,
故,
因?yàn)橹本的斜率依次成等比數(shù)列,
所以,即.
又,所以,即.
由于直線的斜率存在,且,得,且,
設(shè)為點(diǎn)到直線的距離,則,
,
所以,
故面積的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)加工生產(chǎn)一批珠寶,要求每件珠寶都按統(tǒng)一規(guī)格加工,每件珠寶的原材料成本為3.5萬元,每件珠寶售價(jià)(萬元)與加工時(shí)間(單位:天)之間的關(guān)系滿足圖1,珠寶的預(yù)計(jì)銷量(件)與加工時(shí)間(天)之間的關(guān)系滿足圖2.原則上,單件珠寶的加工時(shí)間不能超過55天,企業(yè)支付的工人報(bào)酬為這批珠寶銷售毛利潤的三分之一,其他成本忽略不計(jì)算.
(1)如果每件珠寶加工天數(shù)分別為6,12,預(yù)計(jì)銷量分別會有多少件?
(2)設(shè)工廠生產(chǎn)這批珠寶產(chǎn)生的純利潤為(萬元),請寫出純利潤(萬元)關(guān)于加工時(shí)間(天)之間的函數(shù)關(guān)系式,并求純利潤(萬元)最大時(shí)的預(yù)計(jì)銷量.
注:毛利潤=總銷售額-原材料成本,純利潤=毛利潤-工人報(bào)酬
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某“雙一流類”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問卷調(diào)查,其中一項(xiàng)是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)將同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,求這100人月薪收入的樣本平均數(shù);
(2)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會,并收取一定的活動(dòng)費(fèi)用,有兩種收費(fèi)方案:
方案一:設(shè)區(qū)間,月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收取600元,月薪落在區(qū)間右側(cè)的每人收取800元;
方案二:每人按月薪收入的樣本平均數(shù)的收取;
用該校就業(yè)部統(tǒng)計(jì)的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費(fèi)方案能收到更多的費(fèi)用?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若存在實(shí)數(shù)t,使得任給,不等式恒成立,則m的最大值為( )
A.3B.6C.8D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),.
(1)畫出的大致圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)且時(shí),求的取值范圍;
(3)是否存在實(shí)數(shù)a,b, 使得函數(shù)在上的值域也是?若存在,求出a,b的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓心為點(diǎn),點(diǎn)是圓內(nèi)一個(gè)定點(diǎn),是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn)在圓上運(yùn)動(dòng).
(l)求動(dòng)點(diǎn)的軌跡的方程;
(2)若為曲線上任意一點(diǎn),|的最大值;
(3)經(jīng)過點(diǎn)且斜率為的直線交曲線于兩點(diǎn)在軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)坐標(biāo):若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,是橢圓上一點(diǎn),軸,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于、兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左,右頂點(diǎn)分別為,,長軸長為,且經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為橢圓上異于,的任意一點(diǎn),證明:直線,的斜率的乘積為定值;
(3)已知兩條互相垂直的直線,都經(jīng)過橢圓的右焦點(diǎn),與橢圓交于,和,四點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:
1證明直線l經(jīng)過定點(diǎn)并求此點(diǎn)的坐標(biāo);
2若直線l不經(jīng)過第四象限,求k的取值范圍;
3若直線l交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)的面積為S,求S的最小值及此時(shí)直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com