(2013•韶關(guān)二模)我市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡(單位:歲)分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)這100名志愿者樣本的平均數(shù);
(3)在(1)的條件下,該市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.
(參考數(shù)據(jù):22.5×0.01+27.5×0.07+32.5×0.06+37.5×0.04+42.5×0.02=6.45)
分析:(1)先分別求出這3組的人數(shù),再利用分層抽樣的方法即可得出答案;
(2)利用各個(gè)小矩形的面積乘以對(duì)應(yīng)矩形的底邊的中點(diǎn)的和為數(shù)據(jù)的平均數(shù).
(3)記第3組的3名志愿者為A1,A2,A3,第4組的2名志愿者為B1,B2,第5組的1名志愿者為C1.利用古典概型的概率計(jì)算公式、互斥事件及相互獨(dú)立事件的概率計(jì)算公式即可得出.
解答:解:(1)第3組的人數(shù)為0.3×100=30,第4組的人數(shù)為0.2×100=20,第5組的人數(shù)為0.1×100=10.…(2分)
因?yàn)榈?,4,5組共有60名志愿者,所以利用分層抽樣的方法在60名志愿者中抽取6名志愿者,每組抽取的人數(shù)分別為:第3組:
30
60
×6=3; 第4組:
20
60
×6=2; 第5組:
10
60
×6=1.
所以應(yīng)從第3,4,5組中分別抽取3人,2人,1人.…(4分)
(2)根據(jù)頻率分布直方圖,樣本的平均數(shù)的估計(jì)值為:22.5×(0.01×5)+27.5×(0.07×5)+32.5×(0.06×5)+37.5×(0.04×5)+42.5×(0.02×5)=6.45×5=32.25(歲)
所以,樣本平均數(shù)為32.25歲.…(8分)
(3)記第3組的3名志愿者為A1,A2,A3,第4組的2名志愿者為B1,B2,第5組的1名志愿者為C1.則從6名志愿者中抽取2名志愿者有:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),
(A3,C1),(B1,B2),(B1,C1),(B2,C1),共有15種.…(10分)
其中第4組的2名志愿者B1,B2至少有一名志愿者被抽中的有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),(B1,C1),(B2,C1),共有9種…(11分)
根據(jù)古典概型概率計(jì)算公式,得P(A)=
9
15
=
3
5
…(12分)
答:第4組至少有一名志愿者被抽中的概率為
3
5
…(13分)
點(diǎn)評(píng):熟練掌握頻率分布直方圖、分層抽樣的定義、古典概型的概率計(jì)算公式、互斥事件及相互獨(dú)立事件的概率計(jì)算公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)二模)函數(shù)f(x)=lnx-
1
x-1
的零點(diǎn)的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)二模)在極坐標(biāo)系中,過點(diǎn)A(1,-
π2
)引圓ρ=8sinθ的一條切線,則切線長(zhǎng)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)二模)若a,b∈R,i為虛數(shù)單位,且(a+i)i=b+
5
2-i
,則a+b=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)二模)設(shè)點(diǎn)P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與圓x2+y2=a2+b2在第一象限的交點(diǎn),其中F1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),若tan∠PF2F1=3,則雙曲線的離心率為
10
2
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)二模)已知橢圓
x2
a2
+
y2
a2-1
=1(a>1)的左右焦點(diǎn)為F1,F(xiàn)2,拋物線C:y2=2px以F2為焦點(diǎn)且與橢圓相交于點(diǎn)M(x1,y1)、N(x2,y2),點(diǎn)M在x軸上方,直線F1M與拋物線C相切.
(1)求拋物線C的方程和點(diǎn)M、N的坐標(biāo);
(2)設(shè)A,B是拋物線C上兩動(dòng)點(diǎn),如果直線MA,MB與y軸分別交于點(diǎn)P,Q.△MPQ是以MP,MQ為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個(gè)定值,若不是說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案