已知
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間.

(1);(2)當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

解析試題分析:(1)當(dāng)時(shí),先求出,根據(jù)導(dǎo)數(shù)的幾何意義可得切線的斜率,進(jìn)而計(jì)算出確定切點(diǎn)坐標(biāo),最后由點(diǎn)斜式即可寫出切線的方程并化成直線方程的一般式;(2)先求導(dǎo)并進(jìn)行因式分解,求出的兩個(gè)解 或,針對(duì)兩根的大小進(jìn)行分類討論即分、兩類進(jìn)行討論,結(jié)合二次函數(shù)的圖像與性質(zhì)得出函數(shù)的單調(diào)區(qū)間,最后再將所討論的結(jié)果進(jìn)行闡述,問(wèn)題即可解決.
試題解析:(1) ∵       2分
, 又,所以切點(diǎn)坐標(biāo)為
∴ 所求切線方程為,即     5分
(2)
 得 或                              7分
①當(dāng)時(shí),由, 得,由, 得        9分
此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為  10分
②當(dāng)時(shí),由,得,由,得       12分
此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為      13分
綜上:當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,;當(dāng)時(shí),的單調(diào)遞減區(qū)間為單調(diào)遞增區(qū)間為,        14分.
考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.函數(shù)的單調(diào)性與導(dǎo)數(shù);3.分類討論的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),其中b≠0.
(1)當(dāng)b>時(shí),判斷函數(shù)在定義域上的單調(diào)性:
(2)求函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中m,a均為實(shí)數(shù).
(1)求的極值;
(2)設(shè),若對(duì)任意的,恒成立,求的最小值;
(3)設(shè),若對(duì)任意給定的,在區(qū)間上總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)如果對(duì)于任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的極小值;
(2)求函數(shù)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對(duì)任意的,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)處有極大值
(1)求的解析式;
(2)求的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=x2-mlnx,g(x)=x2-x+a.
(1)當(dāng)a=0時(shí),f(x)≥g(x)在(1,+∞),上恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),若函數(shù)h(x)=f(x)-g(x)在[1,3]上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)當(dāng)a=1,b=2時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)設(shè)x1,x2是f(x)的兩個(gè)極值點(diǎn),x3是f(x)的一個(gè)零點(diǎn),且x3≠x1,x3≠x2.證明:存在實(shí)數(shù)x4,使得x1,x2,x3,x4按某種順序排列后構(gòu)成等差數(shù)列,并求x4.

查看答案和解析>>

同步練習(xí)冊(cè)答案