【題目】已知l,m,n是三條不同的直線,α,β,γ是三個(gè)不同的平面,下面命題正確的是( )
A.若m⊥l,n⊥l,則m∥n
B.若α⊥γ,β⊥γ,則α∥β
C.若m∥l,n∥l,則m∥n
D.若m∥α,n∥α,則m∥n
【答案】C
【解析】解:對(duì)于A,若m⊥l,n⊥l,則m與n的位置關(guān)系有相交、平行或者異面;故A錯(cuò)誤; 對(duì)于B,α⊥γ,β⊥γ,則α與β可能相交;如墻角;故B錯(cuò)誤;
對(duì)于C,若m∥l,n∥l,根據(jù)平行線的傳遞性可以得到m∥n;故C 正確;
對(duì)于D,若m∥α,n∥α,則m與n可能相交、平行或者異面,故D錯(cuò)誤;
故選C.
【考點(diǎn)精析】本題主要考查了空間中直線與直線之間的位置關(guān)系和空間中直線與平面之間的位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn);直線在平面內(nèi)—有無(wú)數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒(méi)有公共點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“對(duì)任意的x∈R,x3﹣x2+1≤0”的否定是( )
A.不存在x∈R,x3﹣x2+1≤0
B.存在x∈R,x3﹣x2+1≤0
C.存在x∈R,x3﹣x2+1>0
D.對(duì)任意的x∈R,x3﹣x2+1>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)(﹣1,3)且平行于直線x﹣2y+3=0的直線方程為( )
A.x﹣2y+7=0
B.2x+y﹣1=0
C.x﹣2y﹣5=0
D.2x+y﹣5=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題:“x0∈R,x02+x0﹣1>0”的否定為( )
A.x∈R,x2+x﹣1<0 B.x∈R,x2+x﹣1≤0
C.x0R,x02+x0﹣1=0 D.x0∈R,x02+x0﹣1≤0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“|x﹣1|+|x+2|≤5”是“﹣3≤x≤2”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U={0,2,4,6,8,10},集合A={2,4,6},B={1},則(UA)∪B等于( )
A.{0,1,8,10}
B.{1,2,4,6}
C.{0,8,10}
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在復(fù)平面內(nèi)復(fù)數(shù)Z=i(1﹣2i)對(duì)應(yīng)的點(diǎn)位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法不正確的是
A. 空間中,一組對(duì)邊平行且相等的四邊形是一定是平行四邊形;
B. 同一平面的兩條垂線一定共面;
C. 過(guò)直線上一點(diǎn)可以作無(wú)數(shù)條直線與這條直線垂直,且這些直線都在同一個(gè)平面內(nèi);
D. 過(guò)一條直線有且只有一個(gè)平面與已知平面垂直
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com