已知a=(1,1,1),b=(0,2,-1),c=ma+nb+(4,-4,1).若c與a及b都垂直,則m,n的值分別為    .
-1  2
∵a=(1,1,1),b=(0,2,-1),
∴c=ma+nb+(4,-4,1)
=(m+4,m+2n-4,m-n+1).
∵a⊥c,
∴m+4+m+2n-4+m-n+1=0,
即3m+n+1=0.   、
∵b⊥c,
∴2(m+2n-4)-(m-n+1)=0,
即m+5n-9=0,       ②
由①②得:m=-1,n=2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正三棱柱所有棱長都是2,D棱AC的中點(diǎn),E是棱的中點(diǎn),AE交于點(diǎn)H.

(1)求證:平面;
(2)求二面角的余弦值;
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30°的角.

求證:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,A,D分別是矩形A1BCD1上的點(diǎn),AB=2AA1=2AD=2,DC=2DD1,把四邊形A1ADD1沿AD折疊,使其與平面ABCD垂直,如圖2所示,連接A1B,D1C得幾何體ABA1­DCD1.

(1)當(dāng)點(diǎn)E在棱AB上移動時(shí),證明:D1E⊥A1D;
(2)在棱AB上是否存在點(diǎn)E,使二面角D1­EC­D的平面角為?若存在,求出AE的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面,底面為正方形,,分別是的中點(diǎn).

(1)求證:
(2)在平面內(nèi)求一點(diǎn),使平面,并證明你的結(jié)論;
(3)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知空間四邊形OABC,點(diǎn)M、N分別是OA、BC的中點(diǎn),且a,b,c,用a,b,c表示向量=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

正四棱錐S-ABCD中,O為頂點(diǎn)在底面上的射影,P為側(cè)棱SD的中點(diǎn),且SO=OD,則直線BC與平面PAC所成的角等于   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線l的方向向量為s=(-1,1,1),平面π的法向量為n=(2,x2+x,-x),若直線l∥平面π,則x的值為(  )
A.-2B.-C.D.±

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在空間直角坐標(biāo)系中,以點(diǎn)A(4,1,9),B(10,-1,6),C(x,4,3)為頂點(diǎn)的△ABC是以BC為斜邊的等腰直角三角形,則實(shí)數(shù)x的值為    .

查看答案和解析>>

同步練習(xí)冊答案