在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,如果2b=a+c,那么內(nèi)角B的最大值等于
 
分析:由已知的等式表示出b,然后利用余弦定理表示出cosB,把表示的b代入利用基本不等式即可求出cosB的最大值,由B的范圍及余弦函數(shù)在此范圍內(nèi)為減函數(shù),即可得到角B的最大值.
解答:解:由2b=a+c,得到b=
a+c
2
,
則cosB=
a2+c2-b2
2ac
=
a2+c2-(
a+c
4
)
2
2ac

=
3a2+3c2-2ac
8ac
4ac
8ac
=
1
2
,
由B∈(0,180°),cosB為減函數(shù),
所以內(nèi)角B的最大值為60°.
故答案為:60°
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用余弦定理化簡(jiǎn)求值,掌握余弦函數(shù)的圖象和性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)邊長(zhǎng)分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習(xí)冊(cè)答案