【題目】已知函數(shù) , .
(Ⅰ)當(dāng) 在 處的切線與直線 垂直時,方程 有兩相異實數(shù)根,求 的取值范圍;
(Ⅱ)若冪函數(shù) 的圖象關(guān)于 軸對稱,求使不等式 在 上恒成立的 的取值范圍.
【答案】解:(Ⅰ)由題設(shè)可得 ,令 ,
則 令 得 ,
0 | |||
遞減 | 極小值 | 遞增 |
,
且 有兩個不等實根 即 .
(Ⅱ)由題設(shè)有 ,令 ,
則 ,令 ,則
又 , , 在 在單調(diào)遞增,
又 ,
當(dāng) ,即 時, ,
所以 在 內(nèi)單調(diào)遞增, ,所以 .
②當(dāng) ,即 時,由 在 內(nèi)單調(diào)遞增,
且 ,
使得 ,
0 | |||
遞減 | 極小值 | 遞增 |
所以 的最小值為 ,
又 ,所以 ,
因此,要使當(dāng) 時, 恒成立,只需 ,即 即可.
解得 ,此時由 ,可得 .
以下求出a的取值范圍.
設(shè) , , 得 ,
所以 在 上單調(diào)遞減,從而 ,
綜上①②所述, 的取值范圍
【解析】(1)方程f(x) = g(x) 有兩相異的實數(shù)根等價于φ ( x ) = g ( x ) f ( x )由兩個零點。(2)令t ( x ) = g ( x ) f ( x ),求出t ( x ) 的導(dǎo)函數(shù)利用導(dǎo)函數(shù)的性質(zhì)對a分情況討論進而研究出函數(shù)的單調(diào)性從而確定出函數(shù)的最值進而得到a的取值范圍。
【考點精析】認真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減),還要掌握函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐 中,底面 為正方形, 平面 ,且 ,點 在線段 上,且 .
(Ⅰ)證明:平面 平面 ;
(Ⅱ)求四棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市某小學(xué)三年級有甲、乙兩個班,其中甲班有男生30人,女生20人,乙班有男生25人,女生25人,現(xiàn)在需要各班按男、女生分層抽取 的學(xué)生進行某項調(diào)查,則兩個班共抽取男生人數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)當(dāng) 時,求函數(shù) 的圖象在 處的切線方程;
(2)若函數(shù) 在定義域上為單調(diào)增函數(shù).
①求 最大整數(shù)值;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“求方程 的解”有如下解題思路:設(shè) ,則 在 上單調(diào)遞減,且 ,所以原方程有唯一解 .類比上述解題思路,不等式 的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 為坐標原點, , 是橢圓 上的點,且 ,設(shè)動點 滿足 .
(Ⅰ)求動點 的軌跡 的方程;
(Ⅱ)若直線 與曲線 交于 兩點,求三角形 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了對新研發(fā)的一批產(chǎn)品進行合理定價,將產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
已知
(1)求的值
(2)已知變量具有線性相關(guān)性,求產(chǎn)品銷量關(guān)于試銷單價的線性回歸方程 可供選擇的數(shù)據(jù)
(3)用表示(2)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值。當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。
參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com