【題目】為了解高一年級學生的智力水平,某校按1:10的比例對700名高一學生按性別分別進行“智力評分”抽樣調(diào)查,測得“智力評分”的頻數(shù)分布表如表1、表2所示.

表1:男生“智力評分”頻數(shù)分布表

智力評分/分

頻數(shù)

2

5

14

13

4

2

表2:女生“智力評分”頻數(shù)分布表

智力評分/分

頻數(shù)

1

7

12

6

3

1

(1)求高一年級的男生人數(shù),并完成下面男生“智力評分”的頻率分布直方圖;

(2)估計該校高一年級學生“智力評分”在內(nèi)的人數(shù).

【答案】1400, 頻率分布直方圖見解析;(2

【解析】

根據(jù)表1和抽樣比例是1:10即可求出男生人數(shù),根據(jù)頻率分布直方圖的作法:利用頻率分布表求出每組頻率.然后求出每組頻率/組距的值即可畫出頻率分布直方圖;

由頻率分布表可知,樣本中“智力評分”在的人數(shù),再利用抽樣比例是1:10即可求出結(jié)果.

(1)由題中表1可知,樣本中男生人數(shù)是40,由抽樣比例是1:10,可得高一年級男生人數(shù)是400.男生“智力評分”的頻率分布直方圖如圖所示.

由頻率分布表可知,樣本中“智力評分”在內(nèi)的頻數(shù)為28,

所以估計該校高一年級學生“智力評分”在內(nèi)的人數(shù)為(人).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名籃球運動員,甲投籃一次命中的概率為,乙投籃一次命中的概率為,若甲、乙各投籃三次,設(shè)為甲、乙投籃命中的次數(shù)的差的絕對值,其中甲、乙兩人投籃是否命中相互沒有影響.

1)若甲、乙第一次投籃都命中,求甲獲勝(甲投籃命中數(shù)比乙多)的概率;

2)求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某文體局為了解“跑團”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )

A. 月跑步平均里程的中位數(shù)為6月份對應的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相對于6月至11月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某多面體的三視圖如圖所示,其中俯視圖是等腰三角形,該多面體的各個面中有若干個是等腰三角形,這些等腰三角形的面積之和為______________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個經(jīng)銷鮮花產(chǎn)品的微店,為保障售出的百合花品質(zhì),每天從云南鮮花基地空運固定數(shù)量的百合花,如有剩余則免費分贈給第二天購花顧客,如果不足,則從本地鮮花供應商處進貨.今年四月前10天,微店百合花的售價為每支2元,云南空運來的百合花每支進價1.6元,本地供應商處百合花每支進價1.8元,微店這10天的訂單中百合花的需求量(單位:支)依次為:251,255,231,243,263,241,265,255,244,252.

(Ⅰ)求今年四月前10天訂單中百合花需求量的平均數(shù)和眾數(shù),并完成頻率分布直方圖;

(Ⅱ)預計四月的后20天,訂單中百合花需求量的頻率分布與四月前10天相同,百合花進貨價格與售價均不變,請根據(jù)(Ⅰ)中頻率分布直方圖判斷(同一組中的需求量數(shù)據(jù)用該組區(qū)間的中點值作代表,位于各區(qū)間的頻率代替位于該區(qū)間的概率),微店每天從云南固定空運250支,還是255支百合花,四月后20天百合花銷售總利潤會更大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,是橢圓上一動點(與左、右頂點不重合).已知的面積的最大值為,橢圓的離心率為.

1)求橢圓的方程;

2)過的直線交橢圓、兩點,過軸的垂線交橢圓與另一點不與、重合).設(shè)的外心為,求證為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

1)求該函數(shù)的單調(diào)區(qū)間;

2)若當x[22]時,不等式fx)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=.

(1) 若不等式k≤xf(x)+在x∈[1,3]上恒成立,求實數(shù)k的取值范圍;

(2) 當x∈ (m>0,n>0)時,函數(shù)g(x)=tf(x)+1(t≥0)的值域為[2-3m,2-3n],求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為

(1)求橢圓的標準方程;

(2)若橢圓的左焦點為,過點的直線與橢圓交于兩點,則在軸上是否存在一個定點使得直線的斜率互為相反數(shù)?若存在,求出定點的坐標;若不存在,也請說明理由.

查看答案和解析>>

同步練習冊答案