已知.
(Ⅰ)求函數(shù)上的最小值;
(Ⅱ)對一切恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:對一切,都有成立.

(Ⅰ);(Ⅱ);(Ⅲ)詳見解析.

解析試題分析:(Ⅰ)求函數(shù)上的最小值,先求出函數(shù)的定義域,然后求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,由于的值不知,故需要分類討論,由得,,因此分,與兩種情況,進(jìn)而可求出最小值;(Ⅱ)對一切恒成立,求實(shí)數(shù)的取值范圍,解這一類題,常常采用含有參數(shù)的放到不等式的一邊,不含參數(shù)(即含)的放到不等式的另一邊,轉(zhuǎn)化為函數(shù)的最值問題,由,則,構(gòu)造函數(shù),則,進(jìn)而得到實(shí)數(shù)a的取值范圍;(Ⅲ)對一切,都有成立,即,結(jié)合(Ⅰ)中結(jié)論可知,構(gòu)造新函數(shù),分析其最大值,可得答案.
試題解析:(Ⅰ)
當(dāng)單調(diào)遞減,當(dāng)單調(diào)遞增   2分 
,即時,;      4分
,即時,上單調(diào)遞增,
所以.                     6分
(Ⅱ),則,
設(shè),則,     8分
單調(diào)遞減,②單調(diào)遞增,
所以,對一切恒成立,
所以.                                  10分
(Ⅲ)問題等價于證明,
由(Ⅰ)可知的最小值是,當(dāng)且僅當(dāng)時取到. 12分
設(shè),則,當(dāng)時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,故當(dāng)取得最大值,即,當(dāng)且僅當(dāng)時取到,從而對一切,都有成立.       14分
考點(diǎn):函數(shù)在某點(diǎn)取得極值的條件,導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若,求的極值;
(Ⅱ)若在定義域內(nèi)無極值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某廠生產(chǎn)產(chǎn)品x件的總成本(萬元),已知產(chǎn)品單價P(萬元)與產(chǎn)品件數(shù)x滿足:,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元,產(chǎn)量定為多少件時總利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),的圖象在它們與坐標(biāo)軸交點(diǎn)處的切線互相平行.
(1)求的值;
(2)若存在使不等式成立,求實(shí)數(shù)的取值范圍;
(3)對于函數(shù)公共定義域內(nèi)的任意實(shí)數(shù),我們把的值稱為兩函數(shù)在處的偏差,求證:函數(shù)在其公共定義域內(nèi)的所有偏差都大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)為實(shí)常數(shù)).
(1)當(dāng)時,求函數(shù)處的切線方程;
(2)設(shè).
①求函數(shù)的單調(diào)區(qū)間;
②若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1e/3/tnl6b.png" style="vertical-align:middle;" />,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間.,試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點(diǎn),直線與函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),記的面積為.

(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在點(diǎn)處的切線方程為
(1)求,的值;
(2)對函數(shù)定義域內(nèi)的任一個實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若,求處的切線方程;
(2)若上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案