【題目】有兩種理財產(chǎn)品,投資這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):

產(chǎn)品

投資結(jié)果

獲利

不賠不賺

虧損

概率

產(chǎn)品

投資結(jié)果

獲利

不賠不賺

虧損

概率

注:,

1)若甲、乙兩人分別選擇了產(chǎn)品投資,一年后他們中至少有一人獲利的概率大于,求實數(shù)的取值范圍;

2)若丙要將20萬元人民幣投資其中一種產(chǎn)品,以一年后的投資收益的期望值為決策依據(jù),則丙選擇哪種產(chǎn)品投資較為理想.

【答案】(1) (2)見解析

【解析】

1)記事件甲選擇產(chǎn)品投資且獲利,記事件乙選擇產(chǎn)品投資且獲利,記事件一年后甲、乙兩人至少有一人投資獲利,根據(jù)題意得到,由,以及,即可求出結(jié)果;

2)假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額,根據(jù)題中條件,得到期望;假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額,由題中條件,得到期望,分情況討論,比較大小,即可得出結(jié)果.

1)記事件甲選擇產(chǎn)品投資且獲利,記事件乙選擇產(chǎn)品投資且獲利,記事件一年后甲、乙兩人至少有一人投資獲利

,,

,且

;

2)假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額(單位:萬元),則的分布列為:

投資結(jié)果

10

0

概率

假設(shè)丙選擇產(chǎn)品投資,且記為獲利金額(單位:萬元),則的分布列為:

投資結(jié)果

8

0

概率

∴當(dāng)時,,丙可在產(chǎn)品和產(chǎn)品中任選一個投資;

當(dāng)時,,丙應(yīng)選產(chǎn)品投資;

當(dāng)時,,丙應(yīng)選產(chǎn)品投資.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時,證明: (其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】江心洲有一塊如圖所示的江邊,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個江水養(yǎng)殖場,有兩個方案:方案l:在岸邊上取兩點,用長度為的圍網(wǎng)依托岸邊線圍成三角形兩邊為圍網(wǎng));方案2:在岸邊,上分別取點,用長度為的圍網(wǎng)依托岸邊圍成三角形.請分別計算,面積的最大值,并比較哪個方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于, 兩點,直線 分別與軸交于點,

(Ⅰ)求橢圓的方程;

(Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,,,,點EBC上,

1)求證:平面平面PAC;

2)若直線PE與平面PAC所成的角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東方商店欲購進(jìn)某種食品(保質(zhì)期兩天),此商店每兩天購進(jìn)該食品一次(購進(jìn)時,該食品為剛生產(chǎn)的).根據(jù)市場調(diào)查,該食品每份進(jìn)價元,售價元,如果兩天內(nèi)無法售出,則食品過期作廢,且兩天內(nèi)的銷售情況互不影響,為了了解市場的需求情況,現(xiàn)統(tǒng)計該產(chǎn)品在本地區(qū)天的銷售量如下表:

(視樣本頻率為概率)

(1)根據(jù)該產(chǎn)品天的銷售量統(tǒng)計表,記兩天中一共銷售該食品份數(shù)為,求的分布列與期望

(2)以兩天內(nèi)該產(chǎn)品所獲得的利潤期望為決策依據(jù),東方商店一次性購進(jìn)份,哪一種得到的利潤更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C(a>b>0)的左.右頂點分別為A,B,離心率為,點P為橢圓上一點.

(1) 求橢圓C的標(biāo)準(zhǔn)方程;

(2) 如圖,過點C(0,1)且斜率大于1的直線l與橢圓交于MN兩點,記直線AM的斜率為k1,直線BN的斜率為k2,若k12k2,求直線l斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著自媒體直播平臺的迅猛發(fā)展,直播平臺上涌現(xiàn)了許多知名三農(nóng)領(lǐng)域創(chuàng)作者,通過直播或視頻播放,幫助當(dāng)?shù)剞r(nóng)民在直播平臺上銷售了大量的農(nóng)產(chǎn)品,促進(jìn)了農(nóng)村的經(jīng)濟(jì)發(fā)展,當(dāng)?shù)剞r(nóng)業(yè)與農(nóng)村管理部門對近幾年的某農(nóng)產(chǎn)品年產(chǎn)量進(jìn)行了調(diào)查,形成統(tǒng)計表如下:

年份

年份代碼

年產(chǎn)量(萬噸)

1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

2)根據(jù)線性回歸方程預(yù)測年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量;

3)從年到年的年年產(chǎn)量中隨機(jī)選出年的產(chǎn)量進(jìn)行具體調(diào)查,求選出的年中恰有一年的產(chǎn)量小于萬噸的概率.

附:對于一組數(shù)據(jù)、、、,其回歸直線的斜率和截距的最小二乘估計分別為,.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項等比數(shù)列滿足,,數(shù)列滿足.

1)求數(shù)列,的通項公式;

2)令,求數(shù)列的前項和;

3)若,且對所有的正整數(shù)都有成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案