【題目】判斷下列結(jié)論的正誤(正確的打“√”,錯(cuò)誤的打“×”).

)在增函數(shù)與減函數(shù)的定義中,可以把任意兩個(gè)自變量改為存在兩個(gè)自變量_____

)函數(shù)的單調(diào)遞減區(qū)間是_____

)所有的單調(diào)函數(shù)都有最值._______

表示同一個(gè)集合.______

)已知定義在上的函數(shù)的圖象是連續(xù)不斷的,當(dāng)時(shí),則方程至少有一個(gè)實(shí)數(shù)解._______

【答案】 × × × ×

【解析】)錯(cuò)誤.因?yàn)榇嬖趦蓚(gè)自變量的值不能得出任意兩個(gè)自變量的值都成立.)注意: 在定義域內(nèi)不是單調(diào)函數(shù),不能用.()錯(cuò)誤,如錯(cuò)誤, 表示兩個(gè)不同的點(diǎn) 正確.

故答案為(1). × (2). × (3). × (4). × (5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

)當(dāng)時(shí),求在區(qū)間上的最大值和最小值.

)解關(guān)于的不等式

)當(dāng)時(shí),若存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面, 為等邊三角形, 分別為的中點(diǎn).

(1)求證: 平面.

(2)求證:平面平面.

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=px﹣ ﹣2lnx.
(Ⅰ)若p=2,求曲線(xiàn)f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)= (e為自然對(duì)數(shù)底數(shù)),若在[1,e]上至少存在一點(diǎn)x0 , 使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò), ,且圓心在直線(xiàn)上.

Ⅰ)求此圓的方程

(Ⅱ)求與直線(xiàn)垂直且與圓相切的直線(xiàn)方程.

(Ⅲ)若點(diǎn)為圓上任意點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+2kx﹣4,若對(duì)任意x∈R,f(x)﹣|x+1|﹣|x﹣1|≤0恒成立,則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)及點(diǎn).

1)證明直線(xiàn)過(guò)某定點(diǎn),并求該定點(diǎn)的坐標(biāo);

(2)當(dāng)點(diǎn)到直線(xiàn)的距離最大時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn) =1(a>0,b>0),A1 , A2是實(shí)軸頂點(diǎn),F(xiàn)是右焦點(diǎn),B(0,b)是虛軸端點(diǎn),若在線(xiàn)段BF上(不含端點(diǎn))存在不同的兩點(diǎn)p1(i=1,2),使得△PiA1A2(i=1,2)構(gòu)成以A1A2為斜邊的直角三角形,則雙曲線(xiàn)離心率e的取值范圍是(
A.( ,+∞)
B.( ,+∞)
C.(1,
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x,y滿(mǎn)足條件 ,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則 的最小值為(
A.
B.
C.
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案