【題目】如圖所示,平面平面,四邊形是邊長為4的正方形,,,分別是,的中點(diǎn).

(1)求證:平面;

(2)若直線與平面所成角等于,求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

(1)利用平行四邊形判定法則,證明CN平行ME,然后結(jié)合直線與平面平行判定,即可。(2)建立直角坐標(biāo)系,分別計(jì)算兩平面的法向量,然后結(jié)合向量數(shù)量積,即可。

(1)取線段中點(diǎn),連結(jié),,因?yàn)?/span>,分別是的中點(diǎn),所以

正方形中,的中點(diǎn).所以,

所以

故四邊形為平行四邊形,

從而

又因?yàn)?/span>平面,平面,所以平面.

(2)過,

因?yàn)槠矫?/span>平面,平面平面,平面,

所以平面,

平面,從而為直線在平面內(nèi)的射影,

為直線與平面所成角,所以.

如圖,以為坐標(biāo)原點(diǎn),分別以過點(diǎn)且平行于的直線、所在的直線

軸、軸、軸建立空間直角坐標(biāo)系

,,,

,,.

設(shè),分別為平面的法向量,

,即

,

,即,令

,

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間租賃甲、乙兩種設(shè)備生產(chǎn)AB兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品8件和B類產(chǎn)品15件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品10件和B類產(chǎn)品25件,已知設(shè)備甲每天的租賃費(fèi)300元,設(shè)備乙每天的租賃費(fèi)400元,現(xiàn)車間至少要生產(chǎn)A類產(chǎn)品100件,B類產(chǎn)品200件,所需租賃費(fèi)最少為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為節(jié)能環(huán)保,推進(jìn)新能源汽車推廣和應(yīng)用,對(duì)購買純電動(dòng)汽車的用戶進(jìn)行財(cái)政補(bǔ)貼,財(cái)政補(bǔ)貼由地方財(cái)政補(bǔ)貼和國家財(cái)政補(bǔ)貼兩部分組成. 某地補(bǔ)貼政策如下(表示純電續(xù)航里程):

三個(gè)純電動(dòng)汽車店分別銷售不同品牌的純電動(dòng)汽車,在一個(gè)月內(nèi)它們的銷售情況如下:

(每位客戶只能購買一輛純電動(dòng)汽車

(1)從上述購買純電動(dòng)汽車的客戶中隨機(jī)選一人,求此人購買的是店純電動(dòng)汽車且享受補(bǔ)貼不低于3.5萬元的概率;

(2)從上述兩個(gè)純電動(dòng)汽車店的客戶中各隨機(jī)選一人,求恰有一人享受5萬元財(cái)政補(bǔ)貼的概率;

(3)從上述三個(gè)純電動(dòng)汽車店的客戶中各隨機(jī)選一人, 這3個(gè)人享受的財(cái)政補(bǔ)貼分別記為. 求隨機(jī)變量的分布列. 試比較數(shù)學(xué)期望的大;比較方差 的大小. (只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且一個(gè)焦點(diǎn)坐標(biāo)為

求橢圓的方程及離心率;

Ⅱ)過點(diǎn)且與x軸不垂直的直線與橢圓C交于兩點(diǎn),若在線段上存在點(diǎn),使得以MP, MQ為鄰邊的平行四邊形是菱形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集200位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

2)根據(jù)這200個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖,其中樣本數(shù)據(jù)的分組區(qū)間為:,,.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率.

3)在樣本數(shù)據(jù)中,有40位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān).(把表簡要畫在答題卡上)

男生

女生

總計(jì)

每周平均體育運(yùn)動(dòng)時(shí)間不超過4小時(shí)

每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)

總計(jì)

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線C的漸近線方程為,一個(gè)焦點(diǎn)為F0,﹣8),則該雙曲線的標(biāo)準(zhǔn)方程為_____.已知點(diǎn)A(﹣6,0),若點(diǎn)PC上一動(dòng)點(diǎn),且P點(diǎn)在x軸上方,當(dāng)點(diǎn)P的位置變化時(shí),△PAF的周長的最小值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,令,若,的兩個(gè)極值點(diǎn),且,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】洛薩科拉茨Collatz,是德國數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半;如果n是奇數(shù),則將它乘3加,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,對(duì)科拉茨猜想,目前誰也不能證明,更不能否定現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)首項(xiàng)按照上述規(guī)則施行變換注:1可以多次出現(xiàn)后的第八項(xiàng)為1,則n的所有可能的取值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:;

(3)試比較 ,并證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊(cè)答案